lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The nature and extent of interactions in phenylalanine anilide molecularly imprinted polymer prepolymerisation mixtures: a new model for the basis for ligand-selective recognition
Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences. (BBCL)ORCID iD: 0000-0003-4037-1992
Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences. (BBCL)ORCID iD: 0000-0002-7392-0591
Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences. (BBCL)
Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences. (BBCL)
Show others and affiliations
2010 (English)Conference paper, (Refereed)
Abstract [en]

In this work, classical molecular dynamics (MD) simulations have been used to provide unique insights on the nature and extent of intermolecular interactions present in a phenylalanine anilide (PA) molecularly imprinted polymers (MIP) prepolymerization mixture.

Molecular Imprinting is a technique for producing highly selective synthetic receptors for a predetermined molecular structure, and involves the formation of cavities in a synthetic polymer matrix that are of complementary functional and structural character to a template molecule.1 It is generally accepted that the recognition properties of a MIP is a product of the interactions between monomers and template during the prepolymerization stage. Accordingly, studies of the nature and extent of the interactions present in prepolymerization mixtures, in patricular those involving template, should yield information which can be related to the observed recognition properties of the final MIP.

Phenylalanine anilide MIPs have been the subject of a significant number of studies aimed at producing an understanding of the mechanisms underlying the recognition processes. Interestingly, two different models have been proposed to explain the behaviour of PA-MIPs. Studies by Sellergren et al. proposed that template selectivity, was a consequence of  the presence of a functional monomer-template complexes of 2:1 stoichiometry.2 Later, however, Katz and Davis proposed an alternative model,3 where the template (PA) recognition sites in the MIP were suggested to arise from functional monomer-template complexes of 1:1 stoichiometry in combination with the presence of higher order template-template complexes.

To resolve this conjecture, we performed a series of MD studies, the results of which demonstrated both the presence of PA-PA self association complexes, and that the most statistically prevalent monomer-PA complex stoichiometry was of a 1:1 nature, though differetn in character from that proposed by Katz and Davis.  Moreover, the role of cross-linker in forming recognition sites was apparnet in these studies, a fact not previously considered.

 

References

  1. Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsh N, Nicholls IA, O’Mahony J, Whitcombe MJ. Molecular imprinting science and technology: A survey of the literature for the years up to and including 2003. Journal of Molecular Recognition 2006;19:106-180
  2. Sellergren B, Lepistö M, Mosbach K. Highly enantioselective and substrate selective polymers obtained by molecular imprinting utilizing noncovalent interactions. NMR and chromatographic studies on the nature of recognition. Journal of the American Chemical Society 1988;110:5853-5860
  3. Katz A, Davis ME. Investigations into the mechanisms of molecular recognition with imprinted polymers. Macromolecules 1999;32:4113-4121

 

Place, publisher, year, edition, pages
2010.
National Category
Organic Chemistry
Research subject
Natural Science, Organic Chemistry
Identifiers
URN: urn:nbn:se:lnu:diva-6720OAI: oai:DiVA.org:lnu-6720DiVA: diva2:329033
Conference
8th European Conference on Computational Chemistry, Lund
Available from: 2010-07-07 Created: 2010-07-07 Last updated: 2016-11-11Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Olsson, Gustaf D.Karlsson, Björn C. G.Wiklander, Jesper G.Shoravi, SiamakNicholls, Ian A.
By organisation
School of Natural Sciences
Organic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

Total: 161 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf