lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Identification of Solvent Properties Influencing Binding to Molecularly Imprinted Polymers
Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences. (BBCL)
Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences. (BBCL)ORCID iD: 0000-0002-0413-2735
Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences. (BBCL)
Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences. (BBCL)ORCID iD: 0000-0002-0407-6542
2010 (English)Conference paper, (Refereed)
Abstract [en]

In order to examine the physical mechanisms underlying molecularly imprinted polymer1 (MIP)–ligand recognition, polymers with selectivity for the local anaesthetic bupivacaine have been synthesised and their ligand-recognition characteristics examined. As several previous studies have pointed at the complexity of the rebinding characteristics and the dependence on rebinding media,2-4 we used chemometric strategies for the analysis of ligand-MIP binding in various media.5

In a previous study we presented results from a chemometric analysis showing that rebinding of bupivacaine to the MIP in different solvent mixtures and at different temperatures follow a complicated non-linear relationship.6 The results from that analysis, motivated an investigation into the significance of the solvent physical characteristics (molecular and bulk) on rebinding properties. In this work,7 principal component analysis was employed to identify the factors with the greatest influence on binding. While the dielectric constant made a significant contribution to describing the observed binding, the influence of polarity as reflected in the Snyder polarity index was also demonstrated to also make a significant contribution. The use of solvents containing hydroxyl functionality was observed to exert unique effects on recognition. The variation in solvent influence on binding at constant dielectricity motivates more complex analyses when studying MIP-ligand recognition.

(1)      Alexander, C.; Andersson, H.S.; Andersson, L.I.; Ansell, R.J.; Kirsch, N.; Nicholls, I.A.; O'Mahony, J.; Whitcombe, M.J. Molecular imprinting science and technology: A survey of the literature for the years up to and including 2003. Journal of Molecular Recognition 2006, 19, 106-180.

(2)      Andersson, L.I. Efficient sample pre-concentration of bupivacaine from human plasma by solid-phase extraction on molecularly imprinted polymers. Analyst 2000, 125, 1515-1517.

(3)      Karlsson, J.G.; Andersson, L.I.; Nicholls, I.A. Probing the molecular basis for ligand-selective recognition in molecularly imprinted polymers selective for the local anaesthetic bupivacaine. Analytica Chimica Acta 2001, 435, 57-64.

(4)      Karlsson, J.G.; Karlsson, B.; Andersson, L.I.; Nicholls, I.A. The roles of template complexation and ligand binding conditions on recognition in bupivacaine molecularly imprinted polymers. Analyst 2004, 129, 456-462.

(5)      Nicholls, I.A.; Andersson, H.S.; Charlton, C.; Henschel, H.; Karlsson, B.C.G.; Karlsson, J.G.; O’Mahony, J.; Rosengren, A.M.; Rosengren, K.J.; Wikman, S. Theoretical and computational strategies for rational molecularly imprinted polymer design. Biosensors and Bioelectronics 2009, 25, 543-552.

(6)      Rosengren, A.M.; Karlsson, J.G.; Andersson, P.O.; Nicholls, I.A. Chemometric models of template-molecularly imprinted polymer binding. Analytical Chemistry 2005, 77, 5700-5705.

(7)      Rosengren, A.M; Golker, K.; Wiklander, J.G.; Nicholls, I.A. Dielectric constants are not enough: Principal component analysis of the influence of solvent properties on molecularly imprinted polymer–ligand rebinding. Biosensors and Bioelectronics 2009, 25, 553-557.

Place, publisher, year, edition, pages
2010.
National Category
Organic Chemistry
Research subject
Natural Science, Organic Chemistry
Identifiers
URN: urn:nbn:se:lnu:diva-6724OAI: oai:DiVA.org:lnu-6724DiVA: diva2:329047
Conference
MIP2010: The 6th International Conference on Molecular Imprinting, New Orleans
Available from: 2010-07-07 Created: 2010-07-07 Last updated: 2016-11-11Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Rosengren, Annika M.Golker, KerstinWiklander, Jesper G.Nicholls, Ian A.
By organisation
School of Natural Sciences
Organic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

Total: 120 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf