lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Schatten-von Neumann properties for Fourier integral operators with non-smooth symbols, II
Linnaeus University, Faculty of Science and Engineering, School of Computer Science, Physics and Mathematics. (Matematisk modellering)ORCID iD: 0000-0003-1921-8168
Dipartimento di Matematico, Turins Universitet, Italien.
Dipartimento di Matematico, Turins Universitet, Italien.
2010 (English)In: Osaka Journal of Mathematics, ISSN 0030-6126, Vol. 47, no 2, p. 739-786Article in journal (Refereed) Published
Abstract [en]

We establish continuity and Schatten-von Neumann properties for Fourier integral operators with amplitudes in weighted modulation spaces, when acting on modulation spaces themselves. The phase functions are non smooth and admit second order derivatives again in suitable classes of modulation spaces.

Place, publisher, year, edition, pages
Tokyo: Maruzen , 2010. Vol. 47, no 2, p. 739-786
National Category
Mathematical Analysis
Research subject
Natural Science, Mathematics
Identifiers
URN: urn:nbn:se:lnu:diva-6874OAI: oai:DiVA.org:lnu-6874DiVA, id: diva2:331598
Projects
Matematisk modelleringAvailable from: 2010-07-23 Created: 2010-07-23 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

permanent link to the object

Authority records BETA

Toft, Joachim

Search in DiVA

By author/editor
Toft, Joachim
By organisation
School of Computer Science, Physics and Mathematics
In the same journal
Osaka Journal of Mathematics
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 134 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf