lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Green LPG
Linnaeus University, Faculty of Science and Engineering, School of Engineering. (Bioenergi)ORCID iD: 0000-0002-4162-3680
Biofuel-Solution AB, Malmö.
Biofuel-Solution AB, Malmö.
2010 (English)Report (Other academic)
Abstract [en]

The use of energy gases with renewable origins will become important with diminishing fossil resources. This as the infrastructure of the gaseous fuels is well built out and the distribution networks already exist. LPG is one of the most versatile fuels around, perfect for rural areas and in many other applications. The fossil origin of the fuel will, in today’s climate and environmental debate, however position it as a thing of the past and not part of the future energy supply. The technology and development performed under this and previous programs with the Swedish Gas Centre will however suggest a way to bridge this conception and make LPG a part of the future energy mix. A good starting point for two and three carbon energy gases is glycerine, with its three carbon backbone. The reason for focusing on glycerine is its benign chemical nature, it is:• Harmless from a toxic standpoint• Chemically inert• Non-corrosive• Relatively high energy density• Zero carbon dioxide emissions It is also readily available as the production of biofuels (from which glycerine is a sideproduct) in the world has increased markedly over the last 10 year period. This glut in the glycerol production has also lowered worldwide prices of glycerine.Since the key step in producing energy gases from glycerol is the dehydration of glycerol to acrolein, this step has attracted much attention during the development work. The step has been improved during the performed work and the need for any regeneration of the catalyst has been significantly reduced, if not omitted completely. This improvement allows for a simple fixed bed reactor design and will save cost in reactor construction as well as in operating costs of the plant. The same conclusion can be drawn from the combination of the two functionalities (dehydration and hydrogenation) in designing a catalyst that promote the direct reaction of 1-propanol to propane in one step instead of two. The experiments with the decarbonylation of acrolein to form ethane show that the catalyst deactivation rates are quite rapid. The addition of noble metal to the catalyst seems to improve the longevity of the catalyst, but the coking is still too severe to provide for a commercially viable process. It is believed that there is a possible way forward for the decarbonylation of acrolein to ethane; it will however require additional time and resources spent in this area. In this work it has been shown that all of the catalytic steps involved in the production of propane from glycerol have sufficient longterm stability and endurance and it is motivated to recommend that the project continues to pilot plant testing stage.

Place, publisher, year, edition, pages
2010. , p. 38
Series
Rapporter från Svenskt Gastekniskt Center, ISSN 1102-7371 ; 222
Keywords [en]
glycerol conversion, synthetic LPG, liquid petroleum gas, biomass, catalytic process
National Category
Energy Engineering
Research subject
Technology (byts ev till Engineering), Bioenergy Technology
Identifiers
URN: urn:nbn:se:lnu:diva-9792ISRN: SGC-R-222-SEOAI: oai:DiVA.org:lnu-9792DiVA, id: diva2:380506
Available from: 2010-12-21 Created: 2010-12-21 Last updated: 2015-11-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

http://www.sgc.se/dokument/SGC222.pdf

Authority records BETA

Brandin, Jan

Search in DiVA

By author/editor
Brandin, Jan
By organisation
School of Engineering
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 196 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf