lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Remarks on mapping properties for the Bargmann transform on modulation spaces
Linnaeus University, Faculty of Science and Engineering, School of Computer Science, Physics and Mathematics. (Matematisk modellering, Center för avancerade studier)ORCID iD: 0000-0003-1921-8168
2011 (English)In: Integral transforms and special functions, ISSN 1065-2469, E-ISSN 1476-8291, Vol. 22, no 4-5, p. 359-366Article in journal (Refereed) Published
Abstract [en]

We investigate the mapping properties for the Bargmann transform and prove that this transform is isometricand bijective from modulation spaces to convenient Banach spaces of analytic functions.

Place, publisher, year, edition, pages
Taylor and Francis , 2011. Vol. 22, no 4-5, p. 359-366
Keywords [en]
bijectivity properties, harmonic oscillator, Hermite functions
National Category
Mathematical Analysis
Research subject
Natural Science, Mathematics
Identifiers
URN: urn:nbn:se:lnu:diva-10404DOI: 10.1080/10652469.2010.541056Scopus ID: 2-s2.0-79956371411OAI: oai:DiVA.org:lnu-10404DiVA, id: diva2:392854
Projects
Matematisk modellering
Note
tillgänglig online 17/5-2011Available from: 2011-01-28 Created: 2011-01-28 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Toft, Joachim

Search in DiVA

By author/editor
Toft, Joachim
By organisation
School of Computer Science, Physics and Mathematics
In the same journal
Integral transforms and special functions
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 151 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf