lnu.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt166",{id:"formSmash:upper:j_idt166",widgetVar:"widget_formSmash_upper_j_idt166",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt167_j_idt170",{id:"formSmash:upper:j_idt167:j_idt170",widgetVar:"widget_formSmash_upper_j_idt167_j_idt170",target:"formSmash:upper:j_idt167:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

On consistency of the quantum-like representation algorithm.PrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2010 (English)In: International journal of theoretical physics, ISSN 0020-7748, E-ISSN 1572-9575, Vol. 49, no 1, p. 1-9Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2010. Vol. 49, no 1, p. 1-9
##### Keywords [en]

Quantum-like representation algorithm, Inverse Born's rule problem, Order of conditioning, Unitary equivalence of representations
##### National Category

Mathematics
##### Research subject

Natural Science, Mathematics
##### Identifiers

URN: urn:nbn:se:lnu:diva-13816DOI: 10.1007/s10773-009-0171-2OAI: oai:DiVA.org:lnu-13816DiVA, id: diva2:435357
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt486",{id:"formSmash:j_idt486",widgetVar:"widget_formSmash_j_idt486",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt492",{id:"formSmash:j_idt492",widgetVar:"widget_formSmash_j_idt492",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt498",{id:"formSmash:j_idt498",widgetVar:"widget_formSmash_j_idt498",multiple:true}); Available from: 2011-08-18 Created: 2011-08-18 Last updated: 2017-12-08Bibliographically approved
##### In thesis

In this paper we continue to study so-called “inverse Born’s rule problem”: to constructa representation of probabilistic data of any origin by a complex probability amplitudewhich matches Born’s rule. The corresponding algorithm—quantum-like representation algorithm(QLRA)—was recently proposed by A. Khrennikov (Found. Phys. 35(10):1655–1693, 2005; Physica E 29:226–236, 2005; Dokl. Akad. Nauk 404(1):33–36, 2005; J. Math.Phys. 46(6):062111–062124, 2005; Europhys. Lett. 69(5):678–684, 2005). Formally QLRAdepends on the order of conditioning. For two observables (of any origin, e.g., physical orbiological) a and b, b|a- and a|b conditional probabilities produce two representations, sayin Hilbert spaces Hb|a and Ha|b. In this paper we prove that under “natural assumptions”(which hold, e.g., for quantum observables represented by operators with nondegeneratespectra) these two representations are unitary equivalent. This result proves the consistencyof QLRA.

1. On relations between classical and quantum theories of information and probability$(function(){PrimeFaces.cw("OverlayPanel","overlay435435",{id:"formSmash:j_idt789:0:j_idt793",widgetVar:"overlay435435",target:"formSmash:j_idt789:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1258",{id:"formSmash:j_idt1258",widgetVar:"widget_formSmash_j_idt1258",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1316",{id:"formSmash:lower:j_idt1316",widgetVar:"widget_formSmash_lower_j_idt1316",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1317_j_idt1319",{id:"formSmash:lower:j_idt1317:j_idt1319",widgetVar:"widget_formSmash_lower_j_idt1317_j_idt1319",target:"formSmash:lower:j_idt1317:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});