lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On hyperbolic interferences in the quantum-like representation algorithm for the case of triple–valued observables
Linnaeus University, Faculty of Science and Engineering, School of Computer Science, Physics and Mathematics.
(English)Manuscript (preprint) (Other academic)
Abstract [en]

The quantum–like representation algorithm (QLRA) was introduced by A. Khrennikov to solve the “inverse Born’s rule problem”, i.e. to construct a representation of probabilistic data– measured in any context of science– and represent this data by a complex or more general probability amplitude which matches a generalization of Born’s rule. The outcome from QLRA will introduce the formula of total probability with an additional term of trigonometric, hyperbolic or hyper-trigonometric interference and this is in fact a generalization of the familiar formula of interference of probabilities. We study representation of statistical data (of any origin) by a probability amplitude in a complex algebra and a Clifford algebra (algebra of hyperbolic numbers). The statistical datas are collected from measurements of two trichotomous observables and the complexity of the problem increased eventually compared to the case of dichotomous observables.We see that only special statistical data (satisfying a number of nonlinear constraints) have a quantum–like representation. In this paper we will present a class of statistical data which satisfy these nonlinear constraints and have a quantum–like representation. This quantum–like representation induces trigonometric-, hyperbolic- and hyper–trigonometric interferences representation.

Keywords [en]
Hyperbolic interferences · Quantum–like representation algorithm · Clifford algebra · Born’s rule · Hyperbolic Hilbert space
National Category
Mathematics
Research subject
Natural Science, Mathematics
Identifiers
URN: urn:nbn:se:lnu:diva-13825OAI: oai:DiVA.org:lnu-13825DiVA, id: diva2:435383
Available from: 2011-08-18 Created: 2011-08-18 Last updated: 2012-01-03Bibliographically approved
In thesis
1. On relations between classical and quantum theories of information and probability
Open this publication in new window or tab >>On relations between classical and quantum theories of information and probability
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis we study quantum-like representation and simulation of quantum algorithms by using classical computers.The quantum--like representation algorithm (QLRA) was  introduced by A. Khrennikov (1997) to solve the ``inverse Born's rule problem'', i.e. to construct a representation of probabilistic data-- measured in any context of science-- and represent this data by a complex or more general probability amplitude which matches a generalization of Born's rule.The outcome from QLRA matches the formula of total probability with an additional trigonometric, hyperbolic or hyper-trigonometric interference term and this is in fact a generalization of the familiar formula of interference of probabilities.

We study representation of statistical data (of any origin) by a probability amplitude in a complex algebra and a Clifford algebra (algebra of hyperbolic numbers). The statistical data is collected from measurements of two dichotomous and trichotomous observables respectively. We see that only special statistical data (satisfying a number of nonlinear constraints) have a quantum--like representation.

We also study simulations of quantum computers on classical computers.Although it can not be denied that great progress have been made in quantum technologies, it is clear that there is still a huge gap between the creation of experimental quantum computers and realization of a quantum computer that can be used in applications. Therefore the simulation of quantum computations on classical computers became an important part in the attempt to cover this gap between the theoretical mathematical formulation of quantum mechanics and the realization of quantum computers. Of course, it can not be expected that quantum algorithms would help to solve NP problems for polynomial time on classical computers. However, this is not at all the aim of classical simulation.

 The second part of this thesis is devoted to adaptation of the Mathematica symbolic language to known quantum algorithms and corresponding simulations on classical computers. Concretely we represent Simon's algorithm, Deutsch-Josza algorithm, Shor's algorithm, Grover's algorithm and quantum error-correcting codes in the Mathematica symbolic language. We see that the same framework can be used for all these algorithms. This framework will contain the characteristic property of the symbolic language representation of quantum computing and it will be a straightforward matter to include future algorithms in this framework.

Place, publisher, year, edition, pages
Växjö, Kalmar: Linnaeus University Press, 2011. p. 161
Series
Linnaeus University Dissertations ; 60/2011
Keywords
Born’s rule, Clifford algebra, Deutsch-Josza algorithm, Grover’s algorithm, Hyperbolic interferences, Inverse Born’s rule problem, Probabilistic data, Quantum computing, Quantum error-correcting, Quantum-like representation algorithm, Shor’s algorithm, Simon’s algorithm, Simulation of quantum algorithms
National Category
Mathematics
Research subject
Natural Science, Mathematics
Identifiers
urn:nbn:se:lnu:diva-13830 (URN)978-91-86491-98-7 (ISBN)
Public defence
2011-09-22, Weber, Universitetsplatsen 1, Växjö, 14:15 (English)
Opponent
Supervisors
Available from: 2011-08-18 Created: 2011-08-18 Last updated: 2011-08-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Nyman, Peter

Search in DiVA

By author/editor
Nyman, Peter
By organisation
School of Computer Science, Physics and Mathematics
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 110 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf