lnu.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt833",{id:"formSmash:upper:j_idt833",widgetVar:"widget_formSmash_upper_j_idt833",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt834_j_idt836",{id:"formSmash:upper:j_idt834:j_idt836",widgetVar:"widget_formSmash_upper_j_idt834_j_idt836",target:"formSmash:upper:j_idt834:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

On hyperbolic interferences in the quantum-like representation algorithm for the case of triple–valued observablesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
(English)Manuscript (preprint) (Other academic)
##### Abstract [en]

##### Keywords [en]

Hyperbolic interferences · Quantum–like representation algorithm · Clifford algebra · Born’s rule · Hyperbolic Hilbert space
##### National Category

Mathematics
##### Research subject

Natural Science, Mathematics
##### Identifiers

URN: urn:nbn:se:lnu:diva-13825OAI: oai:DiVA.org:lnu-13825DiVA, id: diva2:435383
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1123",{id:"formSmash:j_idt1123",widgetVar:"widget_formSmash_j_idt1123",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1129",{id:"formSmash:j_idt1129",widgetVar:"widget_formSmash_j_idt1129",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1135",{id:"formSmash:j_idt1135",widgetVar:"widget_formSmash_j_idt1135",multiple:true}); Available from: 2011-08-18 Created: 2011-08-18 Last updated: 2012-01-03Bibliographically approved
##### In thesis

The quantum–like representation algorithm (QLRA) was introduced by A. Khrennikov to solve the “inverse Born’s rule problem”, i.e. to construct a representation of probabilistic data– measured in any context of science– and represent this data by a complex or more general probability amplitude which matches a generalization of Born’s rule. The outcome from QLRA will introduce the formula of total probability with an additional term of trigonometric, hyperbolic or hyper-trigonometric interference and this is in fact a generalization of the familiar formula of interference of probabilities. We study representation of statistical data (of any origin) by a probability amplitude in a complex algebra and a Clifford algebra (algebra of hyperbolic numbers). The statistical datas are collected from measurements of two trichotomous observables and the complexity of the problem increased eventually compared to the case of dichotomous observables.We see that only special statistical data (satisfying a number of nonlinear constraints) have a quantum–like representation. In this paper we will present a class of statistical data which satisfy these nonlinear constraints and have a quantum–like representation. This quantum–like representation induces trigonometric-, hyperbolic- and hyper–trigonometric interferences representation.

1. On relations between classical and quantum theories of information and probability$(function(){PrimeFaces.cw("OverlayPanel","overlay435435",{id:"formSmash:j_idt1409:0:j_idt1413",widgetVar:"overlay435435",target:"formSmash:j_idt1409:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1845",{id:"formSmash:j_idt1845",widgetVar:"widget_formSmash_j_idt1845",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1898",{id:"formSmash:lower:j_idt1898",widgetVar:"widget_formSmash_lower_j_idt1898",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1899_j_idt1901",{id:"formSmash:lower:j_idt1899:j_idt1901",widgetVar:"widget_formSmash_lower_j_idt1899_j_idt1901",target:"formSmash:lower:j_idt1899:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});