lnu.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt817",{id:"formSmash:upper:j_idt817",widgetVar:"widget_formSmash_upper_j_idt817",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt818_j_idt820",{id:"formSmash:upper:j_idt818:j_idt820",widgetVar:"widget_formSmash_upper_j_idt818_j_idt820",target:"formSmash:upper:j_idt818:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

On measure-preserving functions over ℤ_{3.}PrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2012 (English)In: P-Adic Numbers, Ultrametric Analysis, and Applications, ISSN 2070-0466, Vol. 4, no 4, 326-335 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Maik Nauka/Interperiodica, 2012. Vol. 4, no 4, 326-335 p.
##### Keyword [en]

measure-preserving, generalized polynomial, van der Put basis, 3-adic integers
##### National Category

Mathematics
##### Research subject

Mathematics, Mathematics
##### Identifiers

URN: urn:nbn:se:lnu:diva-22470DOI: 10.1134/S2070046612040061OAI: oai:DiVA.org:lnu-22470DiVA: diva2:567801
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1107",{id:"formSmash:j_idt1107",widgetVar:"widget_formSmash_j_idt1107",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1113",{id:"formSmash:j_idt1113",widgetVar:"widget_formSmash_j_idt1113",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1119",{id:"formSmash:j_idt1119",widgetVar:"widget_formSmash_j_idt1119",multiple:true});
Available from: 2012-11-14 Created: 2012-11-14 Last updated: 2015-10-12Bibliographically approved
##### In thesis

This paper is devoted to (discrete) p-adic dynamical systems, an important domain ofalgebraic and arithmetic dynamics [31]-[41], [5]-[8]. In this note we study properties of measurepreservingdynamical systems in the case p = 3. This case differs crucially from the case p = 2.The latter was studied in the very detail in [43]. We state results on all compatible functions whichpreserve measure on the space of 3-adic integers, using previous work of A. Khrennikov and authorof present paper, see [24]. To illustrate one of the obtained theorems we describe conditions for the3-adic generalized polynomial to be measure-preserving on Z3. The generalized polynomials withintegral coefficients were studied in [17, 33] and represent an important class of T-functions. Inturn, it is well known that T-functions are well-used to create secure and efficient stream ciphers,pseudorandom number generators.

1. P-adic dynamical systems and van der Put basis technique$(function(){PrimeFaces.cw("OverlayPanel","overlay639865",{id:"formSmash:j_idt1380:0:j_idt1384",widgetVar:"overlay639865",target:"formSmash:j_idt1380:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1840",{id:"formSmash:lower:j_idt1840",widgetVar:"widget_formSmash_lower_j_idt1840",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1841_j_idt1843",{id:"formSmash:lower:j_idt1841:j_idt1843",widgetVar:"widget_formSmash_lower_j_idt1841_j_idt1843",target:"formSmash:lower:j_idt1841:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});