lnu.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt158",{id:"formSmash:upper:j_idt158",widgetVar:"widget_formSmash_upper_j_idt158",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt159_j_idt161",{id:"formSmash:upper:j_idt159:j_idt161",widgetVar:"widget_formSmash_upper_j_idt159_j_idt161",target:"formSmash:upper:j_idt159:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Criteria of measure-preserving for p-adic dynamical systems in terms of the van der Put basisPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2013 (English)In: Journal of Number Theory, ISSN 0022-314X, E-ISSN 1096-1658, Vol. 133, no 2, p. 484-491Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2013. Vol. 133, no 2, p. 484-491
##### Keywords [en]

p-Adic numbers, Van der Put basis, Dynamics, Haar measure, Measure-preserving
##### National Category

Mathematics
##### Research subject

Mathematics, Mathematics
##### Identifiers

URN: urn:nbn:se:lnu:diva-23526DOI: 10.1016/j.jnt.2012.08.013ISI: 000311769200009Scopus ID: 2-s2.0-84867664993OAI: oai:DiVA.org:lnu-23526DiVA, id: diva2:589442
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt468",{id:"formSmash:j_idt468",widgetVar:"widget_formSmash_j_idt468",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt474",{id:"formSmash:j_idt474",widgetVar:"widget_formSmash_j_idt474",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt480",{id:"formSmash:j_idt480",widgetVar:"widget_formSmash_j_idt480",multiple:true}); Available from: 2013-01-18 Created: 2013-01-18 Last updated: 2017-12-06Bibliographically approved
##### In thesis

This paper is devoted to (discrete) p-adic dynamical systems, an important domain of algebraic and arithmetic dynamics. We consider the following open problem from theory of p-adic dynamical systems. Given continuous function f : Z(p) -> Z(p). Let us represent it via special convergent series, namely van der Put series. How can one specify whether this function is measure-preserving or not for an arbitrary p? In this paper, for any prime p, we present a complete description of all compatible measure-preserving functions in the additive form representation. In addition we prove the criterion in terms of coefficients with respect to the van der Put basis determining whether a compatible function f : Z(p) -> Z(p) preserves the Haar measure. (C) 2012 Elsevier Inc. All rights reserved.

1. P-adic dynamical systems and van der Put basis technique$(function(){PrimeFaces.cw("OverlayPanel","overlay639865",{id:"formSmash:j_idt759:0:j_idt763",widgetVar:"overlay639865",target:"formSmash:j_idt759:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1198",{id:"formSmash:j_idt1198",widgetVar:"widget_formSmash_j_idt1198",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1251",{id:"formSmash:lower:j_idt1251",widgetVar:"widget_formSmash_lower_j_idt1251",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1252_j_idt1254",{id:"formSmash:lower:j_idt1252:j_idt1254",widgetVar:"widget_formSmash_lower_j_idt1252_j_idt1254",target:"formSmash:lower:j_idt1252:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});