lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Damping Assessment of Light Wooden Assembly With and Without Damping Material
Linnaeus University, Faculty of Technology, Department of Building and Energy Technology.
University of Southern Denmark, Denmark.ORCID iD: 0000-0003-2025-7842
2013 (English)In: Engineering structures, ISSN 0141-0296, E-ISSN 1873-7323, Vol. 49, p. 434-447Article in journal (Refereed) Published
Abstract [en]

Damping elastomers are often used in lightweight wooden constructions and are believed to have good sound insulating effects. In the present study the influence on the structural behaviour by using elastomer damping material (Sylomer®) in the joints, with particular respect to footsteps and floor vibrations, has been investigated. A full scale wooden mock-up was assembled with two different joint configurations and studied under free-free boundary conditions. In the first configuration, the joints between the floor and underlying walls were screwed together. In the second configuration the floor was resting free on top of ribs of elastomer damping material, equivalent to normal building practice when this material is used. Both configurations were analysed and evaluated using experimental modal analysis, in the frequency interval 10-115 Hz.

 

The relative (viscous) damping ratios of the modes were found to be on average 1.2% for the screwed configuration and 2.1% for the configuration with elastomer damping material in the joints. The damping was found to vary significantly between modes in the elastomer case. It was found that at low frequencies damping was high for modes with large motion on the edge where the elastomer material was. At higher frequencies (above approx. 40 Hz), however, the damping for this configuration decreased. This is believed to be caused by a vibration isolation effect of the elastomer, decoupling the floor from the walls at higher frequencies.

 

To assess the differences in vibration levels between the two configurations, mean acceleration levels of well spread points on the different building parts where computed and evaluated. It was found that above approximately 70 Hz, the mean vibration level in the elastomer configuration was significantly lower than for the screwed configuration. Below 70 Hz, however, for many frequencies the mean vibration level for the elastomer configuration was significantly higher than for the screwed configuration (as should be expected in vibration isolation). Problems with springiness and footsteps are due to loads in the frequency range of 10 to 50 Hz, this could indicate that elastomers, used as in the present study, could worsen these types of problems, although improving higher frequency acoustic performance.

Place, publisher, year, edition, pages
2013. Vol. 49, p. 434-447
Keywords [en]
Elastomer, Sylomer®, Joint, Wooden construction, Damping, Experimental modal analysis, EMA, Footstep, Floor vibration, Springiness
National Category
Building Technologies Fluid Mechanics
Research subject
Technology (byts ev till Engineering), Civil engineering
Identifiers
URN: urn:nbn:se:lnu:diva-24554DOI: 10.1016/j.engstruct.2012.11.026ISI: 000317528800035Scopus ID: 2-s2.0-84871772540OAI: oai:DiVA.org:lnu-24554DiVA, id: diva2:607692
Available from: 2013-02-25 Created: 2013-02-25 Last updated: 2025-02-05Bibliographically approved
In thesis
1. Structural-acoustic vibrations in wooden assemblies: Experimental modal analysis and finite element modelling
Open this publication in new window or tab >>Structural-acoustic vibrations in wooden assemblies: Experimental modal analysis and finite element modelling
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
VIBRATIONER OCH STOMBURET LJUD I TRÄKONSTRUKTIONER : Experimentell modalanalys och finit elementmodellering
Abstract [en]

This doctoral thesis concerns flanking transmission in light weight, wooden multi-storey buildings within the low frequency, primarily 20-120 Hz. The overall aim is to investigate how the finite element method can contribute in the design phase to evaluate different junctions regarding flanking transmission.

Two field measurements of accelerations in light weight wooden buildings have been evaluated. In these, two sources; a stepping machine, and an electrodynamic shaker, were used. The shaker was shown to give more detailed information. However, since a light weight structure in field exhibit energy losses to surrounding building parts, reliable damping estimates were difficult to obtain.

In addition, two laboratory measurements were made. These were evaluated using experimental modal analysis, giving the eigenmodes and the damping of the structures. The damping for these particular structures varies significantly with frequency, especially when an elastomer is used in the floor-wall junction. The overall damping is also higher when elastomers are used in the floor-wall junction in comparison to a screwed junction. By analysing the eigenmodes, using the modal assurance criterion, of the same structure with two types of junctions it was concluded that the modes become significantly different. Thereby the overall behavior differs.

Several finite element models representing both the field and laboratory test setups have been made. The junctions between the building blocks in the models have been modeled using tie or springs and dashpots. Visual observation and the modal assurance criterion show that there is more rotational stiffness in the test structures than in the models.

The findings in this doctoral thesis add understanding to how modern joints in wooden constructions can be represented by FE modelling. They will contribute in developing FE models that can be used to see the acoustic effects prior to building an entire house. However, further research is still needed.

Abstract [sv]

Denna doktorsavhandling behandlar flanktransmission i flervåningshus med trästomme, inom det lågfrekventa området, främst 20-120 Hz. Det övergripande målet är att undersöka hur finita elementmetoden kan bidra i konstruktionsfasen för att utvärdera olika knutpunkters inverkan på flanktransmissionen.

Två fältmätningar av accelerationer i trähus har utvärderats. I dessa har två olika lastkällor använts, i den första en stegljudsapparat och i den andra en elektrodynamisk vibrator (shaker). Det visades att shakern kan ge mer detaljerad information, men eftersom vibrationerna även sprider sig till omgivande byggnadsdelar vid fältmätningarna var det svårt att estimera tillförlitliga dämpningsdata även då shaker användes.

Fältmätningarna följdes av två mätningar i laborationsmiljö. Dessa två experiment utvärderades med experimentell modalanalys, vilket ger egenmoder och dämpning hos strukturerna. Dämpningen för dessa trähuskonstruktioner varierar kraftigt med frekvens. Extra stora variationer registreras då en elastomer användes i knutpunkten mellan golv och vägg. Den totala dämpningen är generellt högre när elastomerer används i knutpunkten mellan golv och vägg i jämförelse med då knutpunkten är skruvad. Genom att analysera egenmoder och deras korrelationer (MAC), för samma trästruktur men med olika typer av knutpunkter, drogs slutsatsen att knutpunkten drastiskt förändrar strukturens dynamiska beteende.

Flera finita elementmodeller av både fält- och laboratorieuppställningar har gjorts. I dessa har knutpunkterna mellan byggnadsdelar modellerats helt styvt eller med hjälp av fjädrar och dämpare. Visuella observationer av egenmoder och korrelationen dem emellan visar att det finns mer rotationsstyvhet i försöken än i finita elementmodellerna.

Resultaten i denna doktorsavhandling har gett förståelse för hur knutpunkter i träkonstruktioner beter sig och kan simuleras med finit elementmodellering. Vidare kan resultaten bidra till utvecklingen av FE-modeller som kan användas för att kunna se de akustiska effekterna redan under konstruktionsstadiet. Dock behövs ytterligare forskning inom området.

Place, publisher, year, edition, pages
Växjö, Sweden: Linnaeus University Press, 2013. p. 100
Series
Linnaeus University Dissertations ; 115
Keywords
wooden framed structure, light weight buildings, multi-storey, flanking transmission, junction, vibration distribution, impact noise, damping, elastomers, finite element analysis, experimental modal analysis, FRF, trästomme, träkonstruktion, träbyggnad, flervåningshus, EMA, FEM, flanktransmission, koppling, knutpunkt, vibrationsspridning, stomljud, stegljud, dämpning, elastomerer, finit elementmetod, experimentell modalanalys, accelerationsmätning, frekvensresponsfunktion, modalanalys
National Category
Building Technologies Fluid Mechanics
Identifiers
urn:nbn:se:lnu:diva-24562 (URN)9789187427046 (ISBN)
Public defence
2013-03-15, Södrasalen, Hus M, Lückligs Plats 1, VÄXJÖ, Sweden, 14:24 (Swedish)
Opponent
Supervisors
Available from: 2013-02-28 Created: 2013-02-25 Last updated: 2025-02-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopushttp://www.sciencedirect.com/science/article/pii/S0141029612005925#

Authority records

Bolmsvik, ÅsaBrandt, Anders

Search in DiVA

By author/editor
Bolmsvik, ÅsaBrandt, Anders
By organisation
Department of Building and Energy Technology
In the same journal
Engineering structures
Building TechnologiesFluid Mechanics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 936 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf