lnu.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt157",{id:"formSmash:upper:j_idt157",widgetVar:"widget_formSmash_upper_j_idt157",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt158_j_idt160",{id:"formSmash:upper:j_idt158:j_idt160",widgetVar:"widget_formSmash_upper_j_idt158_j_idt160",target:"formSmash:upper:j_idt158:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

P-adic dynamical systems and van der Put basis techniquePrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Växjö: Linnaeus University Press, 2013.
##### Series

Linnaeus University Dissertations ; 140/2013
##### Keywords [en]

dynamical systems, p-adic, 1-Lipschitz, measure-preserving, ergodicity, spheres, uniformly differentiable
##### National Category

Mathematics
##### Research subject

Mathematics, Applied Mathematics
##### Identifiers

URN: urn:nbn:se:lnu:diva-28026ISBN: 978-91-87427-37-4 (print)OAI: oai:DiVA.org:lnu-28026DiVA, id: diva2:639865
##### Public defence

2013-08-27, D1136, Vaxjo, 13:00 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt454",{id:"formSmash:j_idt454",widgetVar:"widget_formSmash_j_idt454",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt460",{id:"formSmash:j_idt460",widgetVar:"widget_formSmash_j_idt460",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt466",{id:"formSmash:j_idt466",widgetVar:"widget_formSmash_j_idt466",multiple:true}); Available from: 2013-09-10 Created: 2013-08-10 Last updated: 2015-10-12Bibliographically approved
##### List of papers

Theory of dynamical systems in fields of p-adic numbers is an important part of algebraic and arithmetic dynamics. The study of p-adic dynamical systems is motivated by their applications in various areas of mathematics, e.g., in physics, genetics, biology, cognitive science, neurophysiology, computer science, cryptology, etc.

In particular, p-adic dynamical systems found applications in cryptography, which stimulated the interest to nonsmooth dynamical maps. An important class of (in general) nonsmooth maps is given by 1-Lipschitz functions.

In this thesis we restrict our study to the class of 1-Lipschitz functions and describe measure-preserving (for the Haar measure on the ring of p-adic integers) and ergodic functions.

The main mathematical tool used in this work is the representation of the function by the van der Put series which is actively used in p-adic analysis. The van der Put basis differs fundamentally from previously used ones (for example, the monomial and Mahler basis) which are related to the algebraic structure of p-adic fields. The basic point in the construction of van der Put basis is the continuity of the characteristic function of a p-adic ball.

Also we use an algebraic structure (permutations) induced by coordinate functions with partially frozen variables.

In this thesis, we present a description of 1-Lipschitz measure-preserving and ergodic functions for arbitrary prime p.

1. Using van der Put basis to determine if a 2-adic function is measure-preserving or ergodic w.r.t. Haar measure$(function(){PrimeFaces.cw("OverlayPanel","overlay472854",{id:"formSmash:j_idt518:0:j_idt522",widgetVar:"overlay472854",target:"formSmash:j_idt518:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. T-functions revisited: new criteria for bijectivity/transitivity$(function(){PrimeFaces.cw("OverlayPanel","overlay557062",{id:"formSmash:j_idt518:1:j_idt522",widgetVar:"overlay557062",target:"formSmash:j_idt518:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Characterization of ergodicity of p-adic dynamical systems by using the van der Put basis.$(function(){PrimeFaces.cw("OverlayPanel","overlay472858",{id:"formSmash:j_idt518:2:j_idt522",widgetVar:"overlay472858",target:"formSmash:j_idt518:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Ergodicity of dynamical systems on 2-adic spheres$(function(){PrimeFaces.cw("OverlayPanel","overlay607632",{id:"formSmash:j_idt518:3:j_idt522",widgetVar:"overlay607632",target:"formSmash:j_idt518:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. Criteria of measure-preserving for p-adic dynamical systems in terms of the van der Put basis$(function(){PrimeFaces.cw("OverlayPanel","overlay589442",{id:"formSmash:j_idt518:4:j_idt522",widgetVar:"overlay589442",target:"formSmash:j_idt518:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

6. On measure-preserving functions over ℤ_{3.}$(function(){PrimeFaces.cw("OverlayPanel","overlay567801",{id:"formSmash:j_idt518:5:j_idt522",widgetVar:"overlay567801",target:"formSmash:j_idt518:5:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

7. Study of ergodicity of *p*-adic dynamical systems with the aid of van der Put basis$(function(){PrimeFaces.cw("OverlayPanel","overlay456780",{id:"formSmash:j_idt518:6:j_idt522",widgetVar:"overlay456780",target:"formSmash:j_idt518:6:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

8. Van der Put basis and p-adic dynamics$(function(){PrimeFaces.cw("OverlayPanel","overlay387724",{id:"formSmash:j_idt518:7:j_idt522",widgetVar:"overlay387724",target:"formSmash:j_idt518:7:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1184",{id:"formSmash:j_idt1184",widgetVar:"widget_formSmash_j_idt1184",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1239",{id:"formSmash:lower:j_idt1239",widgetVar:"widget_formSmash_lower_j_idt1239",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1241_j_idt1243",{id:"formSmash:lower:j_idt1241:j_idt1243",widgetVar:"widget_formSmash_lower_j_idt1241_j_idt1243",target:"formSmash:lower:j_idt1241:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});