lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Multi-wavelength observations of H 2356-309
Show others and affiliations
2010 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 516, p. A56-Article in journal (Refereed) Published
Abstract [en]

Aims. The properties of the broad-band emission from the high-frequency peaked BL Lac H 2356-309 (z = 0.165) are investigated. Methods. Very high energy (VHE; E > 100 GeV) observations of H 2356-309 were performed with the High Energy Stereoscopic System (HESS) from 2004 through 2007. Simultaneous optical/UV and X-ray observations were made with the XMM-Newton satellite on June 12/13 and June 14/15, 2005. NRT radio observations were also contemporaneously performed in 2005. ATOM optical monitoring observations were also made in 2007. Results. A strong VHE signal, similar to 13 sigma total, was detected by HESS after the four years HESS observations (116.8 h live time). The integral flux above 240 GeV is I(> 240 GeV) = (3.06 +/- 0.26(stat) +/- 0.61(syst)) x 10(-12) cm(-2) s(-1), corresponding to similar to 1.6% of the flux observed from the Crab Nebula. A time-averaged energy spectrum is measured from 200 GeV to 2 TeV and is characterized by a power law (photon index of Gamma = 3.06 +/- 0.15(stat) +/- 0.10(syst)). Significant small-amplitude variations in the VHE flux from H 2356-309 are seen on time scales of months and years, but not on shorter time scales. No evidence for any variations in the VHE spectral slope are found within these data. The XMM-Newton X-ray measurements show a historically low X-ray state, characterized by a hard, broken-power-law spectrum on both nights. Conclusions. The broad-band spectral energy distribution (SED) of the blazar can be adequately fit using a simple one-zone synchrotron self-Compton (SSC) model. In the SSC scenario, higher VHE fluxes could be expected in the future since the observed X-ray flux is at a historically low level.

Place, publisher, year, edition, pages
2010. Vol. 516, p. A56-
Keywords [en]
galaxies: active, BL Lacertae objects: individual: H 2356-309, gamma rays: galaxies
National Category
Astronomy, Astrophysics and Cosmology
Research subject
Physics, Astroparticle Physics
Identifiers
URN: urn:nbn:se:lnu:diva-30251DOI: 10.1051/0004-6361/201014321ISI: 000280275400071OAI: oai:DiVA.org:lnu-30251DiVA, id: diva2:706026
Available from: 2014-03-18 Created: 2013-11-08 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Becherini, Yvonne

Search in DiVA

By author/editor
Becherini, YvonnePunch, M.
In the same journal
Astronomy and Astrophysics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 193 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf