lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optimization of pellet-solar combisystems for buildings using a DoE approach
Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. (Miljövetenskap och Miljöteknik)
DTU, Lyngby, Denmark.
(English)Manuscript (preprint) (Other academic)
Abstract [en]

A DoE investigation using factorial and response-surface designs to analyze a solar–pellet combisystem in Sweden to optimize the system based on energy cost was performed. The same approach was also used to examine collector output energy. Investigated parameters were: building heating load, hot tap water consumption, collector flow rate, tank size, collector area, and estimated wood pellet cost. Cost- and performance-based regression equations were derived for optimal collector area and tank size for a range of buildings, providing tools for individual building solar combisystem sizing and optimization. Tank set-point temperature and estimated future pellet price were subjected to sensitivity analysis, and the influence of solar collector parameters and tank insulation level on profitability was investigated. The results indicate that a larger than expected collector area would be profitable due to inflation and the future price of pellets, and that tank size is less important to system profitability. However, tank insulation and set-point temperature were highly significant.

National Category
Engineering and Technology
Research subject
Environmental Science, Environmental technology
Identifiers
URN: urn:nbn:se:lnu:diva-34085OAI: oai:DiVA.org:lnu-34085DiVA, id: diva2:715617
Funder
Swedish Energy Agency
Note

Presently an article in doctoral thesis "Computer simulation studies for evaluation and optimization of solar, pellets, heat pump systems  and of bio fuel lift-off properties in a diesel environment” by Helena Persson, Linnaeus University Disseratations No 118/2013, March 2013.

Available from: 2014-05-05 Created: 2014-05-05 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Persson, HelenaCarlsson, Bo

Search in DiVA

By author/editor
Persson, HelenaCarlsson, Bo
By organisation
Department of Biology and Environmental Science
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 0 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf