lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Chromosomally encoded arsenical resistance of the moderately thermophilic acidophile Acidithiobacillus caldus.
Umeå University.ORCID iD: 0000-0002-9622-3318
Umeå University.
Umeå University.
2001 (English)In: Extremophiles, ISSN 1431-0651, E-ISSN 1433-4909, Vol. 5, no 4, 247-255 p.Article in journal (Refereed) Published
Abstract [en]

Arsenical resistance is important to bioleaching microorganisms because these organisms release arsenic from minerals such as arsenopyrite during bioleaching. The acidophile Acidithiobacillus caldus KU was found to be resistant to the arsenical ions arsenate, arsenite, and antimony via an inducible, chromosomally encoded resistance mechanism. Because no apparent alteration of the toxic ions was observed, Acidithiobacillus (At.) caldus was tested to determine if it was resistant as a result of decreased accumulation of toxic ions. Reduced accumulation of arsenate and arsenite by induced At. caldus cells supported this hypothesis. It was also found that, with the addition of an energy source, induced At. caldus could transport arsenate and arsenite out of the cell against a concentration gradient. The lack of efflux in the absence of an added energy source and in the presence of inhibitors suggested that efflux was energy dependent. Induced At. caldus also expressed arsenate reductase activity, indicating that At. caldus has an arsenical resistance mechanism that is analogous to previously described systems from other Bacteria. Southern hybridization analysis showed that At. caldus and other gram-negative acidophiles carry an Escherichia coli arsB homologue on the chromosome.

Place, publisher, year, edition, pages
2001. Vol. 5, no 4, 247-255 p.
National Category
Microbiology
Research subject
Natural Science, Microbiology
Identifiers
URN: urn:nbn:se:lnu:diva-37319DOI: 10.1007/s007920100196ISI: 000170563600005PubMedID: 11523894OAI: oai:DiVA.org:lnu-37319DiVA: diva2:750346
Available from: 2014-09-29 Created: 2014-09-29 Last updated: 2016-11-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Dopson, Mark
In the same journal
Extremophiles
Microbiology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 44 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf