lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mineral and iron oxidation at low temperatures by pure and mixed cultures of acidophilic microorganisms.
Umeå University.ORCID iD: 0000-0002-9622-3318
Tampere University of Technology, Tampere, Finland.
Tampere University of Technology, Tampere, Finland.
Tampere University of Technology, Tampere, Finland.
Show others and affiliations
2007 (English)In: Biotechnology and Bioengineering, ISSN 0006-3592, E-ISSN 1097-0290, Vol. 97, no 5, 1205-1215 p.Article in journal (Refereed) Published
Abstract [en]

An enrichment culture from a boreal sulfide mine environment containing a low-grade polymetallic ore was tested in column bioreactors for simulation of low temperature heap leaching. PCR-denaturing gradient gel electrophoresis and 16S rRNA gene sequencing revealed the enrichment culture contained an Acidithiobacillus ferrooxidans strain with high 16S rRNA gene similarity to the psychrotolerant strain SS3 and a mesophilic Leptospirillum ferrooxidans strain. As the mixed culture contained a strain that was within a clade with SS3, we used the SS3 pure culture to compare leaching rates with the At. ferrooxidans type strain in stirred tank reactors for mineral sulfide dissolution at various temperatures. The psychrotolerant strain SS3 catalyzed pyrite, pyrite/arsenopyrite, and chalcopyrite concentrate leaching. The rates were lower at 5 degrees C than at 30 degrees C, despite that all the available iron was in the oxidized form in the presence of At. ferrooxidans SS3. This suggests that although efficient At. ferrooxidans SS3 mediated biological oxidation of ferrous iron occurred, chemical oxidation of the sulfide minerals by ferric iron was rate limiting. In the column reactors, the leaching rates were much less affected by low temperatures than in the stirred tank reactors. A factor for the relatively high rates of mineral oxidation at 7 degrees C is that ferric iron remained in the soluble phase whereas, at 21 degrees C the ferric iron precipitated. Temperature gradient analysis of ferrous iron oxidation by this enrichment culture demonstrated two temperature optima for ferrous iron oxidation and that the mixed culture was capable of ferrous iron oxidation at 5 degrees C.

Place, publisher, year, edition, pages
2007. Vol. 97, no 5, 1205-1215 p.
National Category
Microbiology
Research subject
Natural Science, Microbiology
Identifiers
URN: urn:nbn:se:lnu:diva-37331DOI: 10.1002/bit.21312ISI: 000247960300020PubMedID: 17187443OAI: oai:DiVA.org:lnu-37331DiVA: diva2:750367
Available from: 2014-09-29 Created: 2014-09-29 Last updated: 2016-11-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Dopson, Mark
In the same journal
Biotechnology and Bioengineering
Microbiology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 75 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf