The study concerns the question of how the shape stability features of laminated columns of Norway spruce can be improved in terms of twist through optimal orientation of the individual laminates. Both experimental testing and numerical simulations were employed for evaluating twist stability. In all the columns studied, deformations were measured experimentally at different moisture content levels. A number of columns were also selected for numerical analysis in order to obtain a more thorough understanding of the twist behavior involved, their geometries and material properties of interest being determined. The experimental results showed the twist stability of the columns to be highly dependant upon the internal orientation of the individual laminates. It was also found that high quality columns in terms of shape stability could be manufactured, even when the center-core material has a strong twist tendency. The numerical simulations performed were in close agreement with the experimental results.