This study was conducted to explain the tensile strength loss of wood due to the modification with 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU) and glutaraldehyde (GA). Modified and control wood blocks were macerated to deliberate fibres, and handsheets were produced thereof. The nitrogen content of the fibres indicated that maceration removed the major proportions of DMDHEU. The stability of GA in wood during maceration was not assessed. Tensile strength determined at zero span (z-strength) and finite span (f-strength) was equal for the handsheets from DMDHEU-modified fibres and the control handsheets. The microscopic appearance of the tested finite-span paper strips from DMDHEU-modified fibres mainly indicated interfibre failure and did not differ from the fibre fracture mode of the control handsheets. In contrast, the z-strength of the handsheets from GA-modified fibres was lower than that of controls and decreased with increasing content of GA in the initial modified wood. The f-strength behaviour of the handsheets from GA-modified fibres was the opposite: it was higher than that of controls and increased with increasing GA content. The microscopic appearance of the rapture zones of the finite-span testing mainly indicated intrafibre failure for the GA-modified fibres. It was concluded that cross-linking is likely to be the major reason for tensile strength loss of GA- and DMDHEU-modified wood. In terms of DMDHEU-modified wood, the incrustation of the cell wall by the resin and the reduction in pliability could play an additional role.