Ozone and ozone-based advanced oxidation processes were applied for the treatment of a recalcitrant wastewater generated by wood-based industries that contains different inorganic and organic constituents and high chemical oxygen demand (COD) varying between 3,400 and 4,000 mg/L. The investigation used a tubular ozone reactor combined with an UV reactor designed for different hydraulic retention times. The dependent variables addressed to evaluate the treatment efficiency were the reduction of COD and total organic carbon (TOC) and the biodegradability of the treated effluent based on respirometric studies using activated sludge from a wastewater treatment. The results showed that even though ozonation alone at acid pH promoted COD and TOC reductions of 65 and 31 % respectively, a decrease in the biodegradability was observed. The most effective treatment (COD and TOC reductions of 93 and 43 %, respectively) was obtained when applying ozone combined with UV light at basic pH. The ozone-UV combination was capable of increasing the amount of readily available COD by 75 % with an additional reduction of TOC by 60 %. In conclusion, ozonation at low pH effectively reduces the COD content in wastewater generated by the wood-based industry; however, in order to combine advanced oxidation with biological process, ozone combined with UV is recommended.