lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Determination of ice content in hardened concrete by low-temperature calorimetry
Technical University of Denmark, Denmark.
Technical University of Denmark, Denmark.
Norwegian University of Science and Technology, Norway.
2014 (English)In: Journal of thermal analysis and calorimetry (Print), ISSN 1388-6150, E-ISSN 1588-2926, Vol. 115, no 2, 1335-1351 p.Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

Low-temperature calorimetry has been used to determine the ice content in concrete at different temperatures when exposed to low-temperature environments. However, the analysis of the ice content from the measured data of heat flow is not straightforward. In this study, two important factors influencing the ice content calculation are discussed. The importance of the baseline determination for the calculation of the ice content is realized. Two different methods of generating the baseline are discussed. First, the ‘J-baseline’ is discussed which is a recently proposed extrapolation method based on the accumulated heat curves measured in the freezing and the melting process. Second, the ‘C-baseline’ is discussed in which a calculated baseline is used where the heat capacity of both water and ice and the phase changing behaviour under different testing temperatures are considered. It turns out that both the ‘J-baseline’ method and the ‘C-baseline’ method can be used to calculate the approximate baseline. The heat of fusion of the water confined in small pores is another important parameter to be considered in ice content calculation. This property must be carefully analyzed in order to accurately calculate the ice contents at different temperatures in the freezing and melting process. It should be noted that there is no general agreement on how to obtain the important temperature dependence of the heat of fusion of water confined in small pores. By performing comparison studies, the present study shows the influence of the different values of the heat of fusion commonly adopted on the calculated ice content for the studied concrete samples. The importance and necessity to use an accurate value of the heat of fusion is emphasized. Based on the calculation of the baseline proposed in this work and by carefully selecting the values for the heat of fusion, the ice content in a hardened concrete sample is expected to be estimated with an acceptable accuracy.

Place, publisher, year, edition, pages
2014. Vol. 115, no 2, 1335-1351 p.
National Category
Construction Management
Research subject
Technology (byts ev till Engineering), Civil engineering
Identifiers
URN: urn:nbn:se:lnu:diva-48694DOI: 10.1007/s10973-013-3520-6ISI: 000330729100042OAI: oai:DiVA.org:lnu-48694DiVA: diva2:893423
Available from: 2016-01-12 Created: 2016-01-12 Last updated: 2016-01-19Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Johannesson, Björn
In the same journal
Journal of thermal analysis and calorimetry (Print)
Construction Management

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 35 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf