lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Bargmann transform and powers of harmonic oscillator on Gelfand-Shilov subspaces
Universitat de València, Spain.
Universitat de València, Spain.
Linnaeus University, Faculty of Technology, Department of Mathematics. (Matematisk modellering, Center för avancerade studier, ICMM)ORCID iD: 0000-0003-1921-8168
2017 (English)In: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, ISSN 1578-7303, Vol. 111, no 1, 1-13 p.Article in journal (Refereed) Published
Abstract [en]

We consider the counter images H_♭(R^d) and H_{0,♭}(R^d) of entire functions with exponential and almost exponential bounds, respectively, under the Bargmann transform, and we characterize them by estimates of powers of the harmonic oscillator. We also consider the Pilipovic ́ spaces S_s(R^d ) and Σ_s(R^d) when 0 < s < 1/2 and deduce their images under the Bargmann transform.

Place, publisher, year, edition, pages
Springer, 2017. Vol. 111, no 1, 1-13 p.
Keyword [en]
Bargmann transform, Harmonic oscillator, Gelfand–Shilov spaces
National Category
Mathematical Analysis
Research subject
Mathematics, Mathematics
Identifiers
URN: urn:nbn:se:lnu:diva-50408DOI: 10.1007/s13398-015-0273-zISI: 000392320300001OAI: oai:DiVA.org:lnu-50408DiVA: diva2:910373
Projects
Matematisk modellering
Available from: 2016-03-09 Created: 2016-03-09 Last updated: 2017-02-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textFulltext (read only)

Search in DiVA

By author/editor
Toft, Joachim
By organisation
Department of Mathematics
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 158 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf