lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Small molecule probes to quantify the functional fraction of a specific protein in a cell with minimal folding equilibrium shifts.
The Scripps Research Institute, USA.
The Scripps Research Institute, USA.
The Scripps Research Institute, USA.
University of California, USA.
Show others and affiliations
2014 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 111, no 12, 4449-4454 p.Article in journal (Refereed) Published
Abstract [en]

Although much is known about protein folding in buffers, it remains unclear how the cellular protein homeostasis network functions as a system to partition client proteins between folded and functional, soluble and misfolded, and aggregated conformations. Herein, we develop small molecule folding probes that specifically react with the folded and functional fraction of the protein of interest, enabling fluorescence-based quantification of this fraction in cell lysate at a time point of interest. Importantly, these probes minimally perturb a protein's folding equilibria within cells during and after cell lysis, because sufficient cellular chaperone/chaperonin holdase activity is created by rapid ATP depletion during cell lysis. The folding probe strategy and the faithful quantification of a particular protein's functional fraction are exemplified with retroaldolase, a de novo designed enzyme, and transthyretin, a nonenzyme protein. Our findings challenge the often invoked assumption that the soluble fraction of a client protein is fully folded in the cell. Moreover, our results reveal that the partitioning of destabilized retroaldolase and transthyretin mutants between the aforementioned conformational states is strongly influenced by cytosolic proteostasis network perturbations. Overall, our results suggest that applying a chemical folding probe strategy to other client proteins offers opportunities to reveal how the proteostasis network functions as a system to regulate the folding and function of individual client proteins in vivo.

Place, publisher, year, edition, pages
2014. Vol. 111, no 12, 4449-4454 p.
Keyword [en]
chemical probes, pharmacologic chaperone, fluorescence labeling
National Category
Biochemistry and Molecular Biology
Research subject
Chemistry, Biochemistry
Identifiers
URN: urn:nbn:se:lnu:diva-50607DOI: 10.1073/pnas.1323268111PubMedID: 24591605OAI: oai:DiVA.org:lnu-50607DiVA: diva2:911191
Available from: 2016-03-11 Created: 2016-03-11 Last updated: 2016-03-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Bjelic, Sinisa
In the same journal
Proceedings of the National Academy of Sciences of the United States of America
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 35 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf