lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The relation between indentation modulus, microfibril angle, and elastic properties of wood cell walls
Vienna University of Technology, Austria.
Vienna University of Technology, Austria.ORCID iD: 0000-0002-7829-4630
Vienna University of Technology, Austria.
Vienna University of Technology, Austria.
2011 (English)In: Composites. Part A, Applied science and manufacturing, ISSN 1359-835X, E-ISSN 1878-5840, Vol. 42, no 6, 677-685 p.Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

Nanoindentation is a well known tool for identification of mechanical properties at the micrometer scale of materials. When applied to study wood cell walls the commonly used isotropic indentation theory is not applicable. In this study, anisotropic nanoindentation theory was employed for analyzing nanoindentation test results on wood cell walls. The influence of elastic stiffness components, microfibril angle, and cell wall composition on the indentation modulus was studied. The indentation modulus was found to depend on longitudinal, transverse, and shear modulus to a similar extent. A significant influence of the microfibril angle on the indentation modulus was observed and discussed with respect to experimental scatter and sample preparation. It is concluded, that application of anisotropic nanoindentation theory provides a tool for quantitative instead of qualitative investigation of wood cell walls, with the goal of identifying all elastic properties of the transversely isotropic cell wall from nanoindentation tests.

Place, publisher, year, edition, pages
2011. Vol. 42, no 6, 677-685 p.
Keyword [en]
A. Wood, B. Mechanical properties, C. Analytical modeling, Nanoindentation
National Category
Wood Science Composite Science and Engineering
Research subject
Technology (byts ev till Engineering), Forestry and Wood Technology; Technology (byts ev till Engineering), Civil engineering
Identifiers
URN: urn:nbn:se:lnu:diva-51225DOI: 10.1016/j.compositesa.2011.02.007OAI: oai:DiVA.org:lnu-51225DiVA: diva2:913860
Available from: 2016-03-22 Created: 2016-03-22 Last updated: 2016-03-23Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full texthttp://www.sciencedirect.com/science/article/pii/S1359835X11000510

Search in DiVA

By author/editor
Bader, Thomas K.
In the same journal
Composites. Part A, Applied science and manufacturing
Wood ScienceComposite Science and Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 181 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf