lnu.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Micromechanical Modeling of Wood: Multiscale Modeling and Model Validation
Vienna University of Technology, Austria.ORCID iD: 0000-0002-7829-4630
University of Glasgow, UK.
Vienna University of Technology, Austria.
2013 (English)Conference paper, Oral presentation with published abstract (Other academic)
Abstract [en]

Due to its natural origin and its inherent heterogeneities, mechanical properties of wood are highlyanisotropic and show a broad variability, not only between different wood species, but also within a tree [1].Similar to other biological materials, the wood microstructure is well organized and hierarchically structuredfrom the annual rings visible to the naked eye down to the wood polymers cellulose, hemicellulose, andlignin at the nanometer-scale. The aim of the research conducted at the Institute for Mechanics of Materialsand Structures is a deeper understanding of the role of different hierarchical levels and their correspondingphysical and chemical characteristics in relation to mechanical properties of softwood and hardwood. This isachieved by means of micromechanical modeling and experimental analyses at various length scales.

A micromechanical model provides the opportunity to predict poroelastic properties of softwood andhardwood tissues at different hierarchical levels from microstructural and compositional data [1,2]. Thehierarchical organization of wood is mathematically represented in a multiscale model. Effective poroelasticproperties are predicted by means of continuum micromechanical approaches (self-consistent method andMori-Tanaka method), the unit cell method, and laminate theory. These approaches are extended to accountfor water-induced eigenstresses within representative volume elements and repetitive unit cells, which aresubsequently upscaled to the macroscopic wood level.

Verification of the micromechanical model for softwood and hardwood with a comprehensive experimentaldataset, shows that it suitably predicts elastic properties at different length scales under the assumption ofundrained conditions [3,4]. Moreover, Biot tensors, expressing how much of the cell wall water-induced porepressure is transferred to the boundary of an overall deformation-free representative volume element (RVE),and Biot moduli, expressing the porosity changes invoked by a pore pressure within such an RVE can bestudied at different length scales. Consequently, the relevance and the contribution of specificmicrostructural characteristics to the load transfer and the deformation characteristics in case of moisturechanges in wood can be studied. Besides the scientific interest in structure-function-relationships, theseinvestigations are motivated by the growing importance of wood as building material.

Place, publisher, year, edition, pages
Vienna, 2013. p. 20-
Keywords [en]
multiscale modeling, micromechanics, poromechanics, wood
National Category
Wood Science Composite Science and Engineering
Research subject
Technology (byts ev till Engineering), Civil engineering; Technology (byts ev till Engineering), Forestry and Wood Technology
Identifiers
URN: urn:nbn:se:lnu:diva-51429ISBN: 978-3-9503537-2-3 (print)OAI: oai:DiVA.org:lnu-51429DiVA, id: diva2:914884
Conference
19th Inter-Institute Seminar for Young Researchers
Note

Ej belagd 160412

Available from: 2016-03-27 Created: 2016-03-27 Last updated: 2016-04-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Bader, Thomas K.

Search in DiVA

By author/editor
Bader, Thomas K.
Wood ScienceComposite Science and Engineering

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 567 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf