lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Wide-band, low-frequency pulse profiles of 100 radio pulsars with LOFAR
ASTRON, The Netherlands ; Osservatorio Astronomico di Cagliari INAF-OAC, Italy.
ASTRON, The Netherlands ; University of Amsterdam, The Netherlands.
The University of Manchester, UK.
ASTRON, The Netherlands ; Lebedev Physical Institute, Russia.
Show others and affiliations
2016 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 586, A92Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

Context. LOFAR offers the unique capability of observing pulsars across the 10−240  MHz frequency range with a fractional bandwidth of roughly 50%. This spectral range is well suited for studying the frequency evolution of pulse profile morphology caused by both intrinsic and extrinsic effects such as changing emission altitude in the pulsar magnetosphere or scatter broadening by the interstellar medium, respectively.

Aims. The magnitude of most of these effects increases rapidly towards low frequencies. LOFAR can thus address a number of open questions about the nature of radio pulsar emission and its propagation through the interstellar medium.

Methods. We present the average pulse profiles of 100 pulsars observed in the two LOFAR frequency bands: high band (120–167 MHz, 100 profiles) and low band (15–62 MHz, 26 profiles). We compare them with Westerbork Synthesis Radio Telescope (WSRT) and Lovell Telescope observations at higher frequencies (350 and 1400 MHz) to study the profile evolution. The profiles were aligned in absolute phase by folding with a new set of timing solutions from the Lovell Telescope, which we present along with precise dispersion measures obtained with LOFAR.

Results. We find that the profile evolution with decreasing radio frequency does not follow a specific trend; depending on the geometry of the pulsar, new components can enter into or be hidden from view. Nonetheless, in general our observations confirm the widening of pulsar profiles at low frequencies, as expected from radius-to-frequency mapping or birefringence theories.

Place, publisher, year, edition, pages
2016. Vol. 586, A92
Keyword [en]
stars, neutron, pulsars
National Category
Astronomy, Astrophysics and Cosmology
Research subject
Physics, Astroparticle Physics
Identifiers
URN: urn:nbn:se:lnu:diva-51522DOI: 10.1051/0004-6361/201425196OAI: oai:DiVA.org:lnu-51522DiVA: diva2:915283
Available from: 2016-03-29 Created: 2016-03-29 Last updated: 2016-05-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Thoudam, Satyendra
In the same journal
Astronomy and Astrophysics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 102 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf