In this study we investigate the potential impacts of future climate change scenarios on overheating risk and primary energy use for space conditioning of a newly built multi-story apartment building in Växjö, Sweden. The building is district heated and potentially cooled by stand-alone air conditioners. We consider climate change scenarios for the period 2050-2059, historical climate of 1961-1990 and recent climate of 1996-2005. The climate change scenarios are based on the representative concentration pathways 4.5 and 8.5. We explore the risk of overheating of the building and analyse the impacts of different strategies for overheating control, including increased airing and solar shading besides mechanical cooling. We investigate the implications of different renewable based electricity supply options for space cooling and ventilation of the building. The results show that the space heating demand is significantly reduced and cooling demand is strongly increased for the building with the future climate scenarios. Furthermore the risk of overheating increases under the climate change scenarios. Among the overheating control strategies analysed, solar shading is the single most effective measure, giving the lowest primary energy use for space conditioning. Complementing the electricity from biomass-fired condensing power plants with solar-based electricity reduced the space conditioning primary energy use by 4-9%. Adding increased airing to the control strategies increased the primary energy use.