lnu.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt196",{id:"formSmash:upper:j_idt196",widgetVar:"widget_formSmash_upper_j_idt196",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt204_j_idt207",{id:"formSmash:upper:j_idt204:j_idt207",widgetVar:"widget_formSmash_upper_j_idt204_j_idt207",target:"formSmash:upper:j_idt204:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

An Approximate Nash Equilibrium for Pure Jump Markov Games of Mean-field-type on Continuous State SpacePrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2017 (English)In: Stochastics: An International Journal of Probablitiy and Stochastic Processes, ISSN 1744-2508, E-ISSN 1744-2516, Vol. 89, no 6-7, p. 967-993Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

London: Taylor & Francis, 2017. Vol. 89, no 6-7, p. 967-993
##### Keywords [en]

Mean-field games-Non-linear Markov Processes, Optimal Control
##### National Category

Probability Theory and Statistics
##### Research subject

Mathematics, Mathematics
##### Identifiers

URN: urn:nbn:se:lnu:diva-55851DOI: 10.1080/17442508.2017.1297812ISI: 000415805700010OAI: oai:DiVA.org:lnu-55851DiVA, id: diva2:956692
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt841",{id:"formSmash:j_idt841",widgetVar:"widget_formSmash_j_idt841",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt850",{id:"formSmash:j_idt850",widgetVar:"widget_formSmash_j_idt850",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt856",{id:"formSmash:j_idt856",widgetVar:"widget_formSmash_j_idt856",multiple:true});
##### Projects

SwedenAvailable from: 2016-08-31 Created: 2016-08-31 Last updated: 2018-12-14Bibliographically approved
##### In thesis

We investigate mean-field games from the point of view of a large number of indistinguishable players, which eventually converges to infinity. The players are weakly coupled via their empirical measure. The dynamics of the states of the individual players is governed by a non-autonomous pure jump type semi group in a Euclidean space, which is not necessarily smoothing. Investigations are conducted in the framework of non-linear Markovian semi groups. We show that the individual optimal strategy results from a consistent coupling of an optimal control problem with a forward non-autonomous dynamics. In the limit as the number N of players goes to infinity this leads to a jump-type analog of the well-known non-linear McKean–Vlasov dynamics. The case where one player has an individual preference different from the ones of the remaining players is also covered. The two results combined reveal an epsilon-NashEquilibrium for the N-player games.

1. Mean Field Games for Jump Non-Linear Markov Process$(function(){PrimeFaces.cw("OverlayPanel","overlay956697",{id:"formSmash:j_idt1493:0:j_idt1499",widgetVar:"overlay956697",target:"formSmash:j_idt1493:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt2029",{id:"formSmash:j_idt2029",widgetVar:"widget_formSmash_j_idt2029",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt2097",{id:"formSmash:lower:j_idt2097",widgetVar:"widget_formSmash_lower_j_idt2097",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt2098_j_idt2100",{id:"formSmash:lower:j_idt2098:j_idt2100",widgetVar:"widget_formSmash_lower_j_idt2098_j_idt2100",target:"formSmash:lower:j_idt2098:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});