lnu.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Bell Could Become the Copernicus of ProbabilityPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2016 (English)In: Open systems & information dynamics, ISSN 1230-1612, E-ISSN 1573-1324, Vol. 23, no 2, 1650008Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2016. Vol. 23, no 2, 1650008
##### National Category

Probability Theory and Statistics Computational Mathematics
##### Research subject

Natural Science, Mathematics
##### Identifiers

URN: urn:nbn:se:lnu:diva-56120DOI: 10.1142/S1230161216500086ISI: 000382850400001Scopus ID: 2-s2.0-84982802729OAI: oai:DiVA.org:lnu-56120DiVA: diva2:964785
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt433",{id:"formSmash:j_idt433",widgetVar:"widget_formSmash_j_idt433",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt439",{id:"formSmash:j_idt439",widgetVar:"widget_formSmash_j_idt439",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt445",{id:"formSmash:j_idt445",widgetVar:"widget_formSmash_j_idt445",multiple:true});
Available from: 2016-09-08 Created: 2016-08-31 Last updated: 2016-10-06Bibliographically approved

Our aim is to emphasize the role of mathematical models in physics, especially models of geometry and probability. We briefly compare developments of geometry and probability by pointing to similarities and differences: from Euclid to Lobachevsky and from Kolmogorov to Bell. In probability, Bell could play the same role as Lobachevsky in geometry. In fact, violation of Bell's inequality can be treated as implying the impossibility to apply the classical probability model of Kolmogorov (1933) to quantum phenomena. Thus the quantum probabilistic model (based on Born's rule) can be considered as the concrete example of the non-Kolmogorovian model of probability, similarly to the Lobachevskian model - the first example of the non-Euclidean model of geometry. This is the "probability model" interpretation of the violation of Bell's inequality. We also criticize the standard interpretation - an attempt to add to rigorous mathematical probability models additional elements such as (non)locality and (un)realism. Finally, we compare embeddings of non-Euclidean geometries into the Euclidean space with embeddings of the non-Kolmogorovian probabilities (in particular, quantum probability) into the Kolmogorov probability space. As an example, we consider the CHSH-test. © 2016 World Scientific Publishing Company.

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1168",{id:"formSmash:lower:j_idt1168",widgetVar:"widget_formSmash_lower_j_idt1168",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1169_j_idt1171",{id:"formSmash:lower:j_idt1169:j_idt1171",widgetVar:"widget_formSmash_lower_j_idt1169_j_idt1171",target:"formSmash:lower:j_idt1169:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});