We represent Born’s rule as an analog of the formula of total probability (FTP): the classical formula is perturbed by an additive interference term. In this note we consider practically the most general case: generalized quantum observables given by positive operator valued measures and measurement feedback on states described by atomic instruments. This representation of Born’s rule clarifies the probabilistic structure of quantum mechanics (QM). The probabilistic counterpart of QM can be treated as the probability update machinery based on the special generalization of classical FTP. This is the essence of the Växjö interpretation of QM: statistical realist contextual and local interpretation. We analyze the origin of the additional interference term in quantum FTP by considering the contextual structure of the two slit experiment which was emphasized by R. Feynman.