lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Tall timber buildings: a preliminary study of wind-induced vibrations of a 22-storey building
Linnaeus University, Faculty of Technology, Department of Building Technology.ORCID iD: 0000-0001-5319-4855
Linnaeus University, Faculty of Technology, Department of Mechanical Engineering. (Maskinteknik)ORCID iD: 0000-0002-4404-5708
SP Sveriges tekniska forskningsinstitut.
SP Sveriges tekniska forskningsinstitut.ORCID iD: 0000-0001-8970-7114
2016 (English)In: Proceedings of the World Conference on Timber Engineering (WCTE 2016): August 22-25, 2016, Vienna, Austria / [ed] J. Eberhardsteiner, W. Winter, A. Fadai, M. Pöll, Vienna: Vienna University of Technology , 2016Conference paper, Published paper (Other academic)
Abstract [en]

During the last years the interest in multi-storey timber buildings has increased and several medium-to-high-rise buildings with light-weight timber structures have been designed and built. Examples of such are the 8-storey building “Limnologen” in Växjö, Sweden, the 9-storey “Stadthouse” in London, UK and the 14-storey building “Treet” in Bergen, Norway. The structures are all light-weight and flexible timber structures which raise questions regarding wind induced vibrations. This paper will present a finite element-model of a 22 storey building with a glulam-CLT structure. The model will be used to study the effect of different structural properties such as damping, mass and stiffness on the peak acceleration and will be compared to the ISO 10137 vibration criteria for human comfort. The results show that it is crucial to take wind-induced vibrations into account in the design of tall timber buildings.

Place, publisher, year, edition, pages
Vienna: Vienna University of Technology , 2016.
Keywords [en]
Deformation, dynamic properties, stabilisation, sway, wind loads
National Category
Building Technologies
Research subject
Technology (byts ev till Engineering), Civil engineering; Technology (byts ev till Engineering), Mechanical Engineering
Identifiers
URN: urn:nbn:se:lnu:diva-56569Scopus ID: 2-s2.0-85011003349ISBN: 978-3-903039-00-1 (print)OAI: oai:DiVA.org:lnu-56569DiVA, id: diva2:971686
Conference
World Conference on Timber Engineering (WCTE 2016), August 22-25, 2016, Vienna, Austria
Projects
Tall Timber Buildings
Funder
Swedish Research Council Formas, 942-2015-115
Note

Ej belagd 20161019

Available from: 2016-09-19 Created: 2016-09-19 Last updated: 2022-05-19Bibliographically approved
In thesis
1. Wind-induced vibrations in tall timber buildings: Design standards, experimental and numerical modal analyses
Open this publication in new window or tab >>Wind-induced vibrations in tall timber buildings: Design standards, experimental and numerical modal analyses
2022 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Climate change and densification of cities are two major global challenges. Inthe building and construction industry, there are great expectations that tall timberbuildings will constitute one of the most sustainable solutions. First, verticalurban growth is energy and resource-efficient. Second, forest-based productsstore carbon and have one of the highest mechanical strength to density ratios.If the structural substitution of concrete and steel with wood in high-rise buildingsawakens fears of fire safety issues, engineers and researchers are particularlyworried about the dynamic response of the trendy tall timber buildings.Indeed, due to the low density of wood, they are lighter, and for the same height,they might be more sensitive to wind-induced vibrations than traditional buildings.To satisfy people’s comfort on the top floors, the serviceability design oftall timber buildings must consider wind-induced vibrations carefully. Architectsand structural engineers need accurate and verified calculation methods,useful numerical models and good knowledge of the dynamical properties oftall timber buildings.

Firstly, the research work presented hereby attempts to increase the understandingof the dynamical phenomena of wind-induced vibration in tall buildings andevaluate the accuracy of the semi-empirical models available to estimate alongwindaccelerations in buildings. Secondly, it aims at, experimentally and numerically,studying the impact of structural parameters – masses, stiffnesses anddamping – on the dynamics of timber structures. Finally, it suggests how talltimber buildings can be modeled to correctly predict modal properties and windinducedresponses.

This research thesis confirms the concerns that timber buildings above 15-20stories are more sensitive to wind excitation than traditional buildings with concreteand steel structures, and solutions are proposed to mitigate this vibrationissue. Regarding the comparison of models from different standards to estimatewind-induced accelerations, the spread of the results is found to be very large.From vibration tests on a large glulam truss, the connection stiffnesses are foundto be valuable for predicting modal properties, and numerical reductions withsimple spring models yield fair results. Concerning the structural models of conceptualand real tall timber buildings, numerical case studies emphasize the importanceof accurately distributed masses and stiffnesses of structural elements,connections and non-structural building parts, and the need for accurate dampingvalues.

Abstract [sv]

Klimatförändringar och förtätning av städer är två stora globala utmaningar. Inom bygg- och anläggningsbranschen finns det stora förväntningar på att höga trähus ska utgöra en av de mest hållbara lösningarna. Dels är vertikal förtätning i städer energi- och resurseffektiv, dels lagrar skogsbaserade produkter kol och har dessutom ett av de högsta förhållanden mellan mekanisk styrka och densitet. Om den strukturella ersättningen av stål och betong med trä i höghus väcker farhågor ur brandsäkerhetssynpunkt, är ingenjörer och forskare särskilt oroliga för den dynamiska responsen i de trendiga högre trähusen. På grund av träets låga densitet blir de lättare, och för samma höjd kan de vara känsligare för vindinducerade vibrationer än traditionella byggnader. För att tillfredsställa människors komfort på de översta våningarna måste projektören av höga trähus noga överväga vindinducerade vibrationer i bruksgränstillstånd. Arkitekter och byggnadsingenjörer behöver noggranna och verifierade beräkningsmetoder, användbara numeriska modeller och goda kunskaper om höga träbyggnaders dynamiska egenskaper.

För det första avser detta forskningsarbete att öka förståelsen för den dynamiska effekten av vindinducerade vibrationer i höga byggnader och utvärdera noggrannheten hos de semi-empiriska modeller som finns tillgängliga för att uppskatta byggnadens accelerationer i vindriktningen. För det andra syftar det till att, experimentellt och numeriskt, studera effekterna av strukturella parametrar – massor, styvheter och dämpning – på träkonstruktioners dynamik. Slutligen undersöks hur höga träbyggnader kan modelleras för att korrekt förutsäga modala egenskaper och vindinducerade respons.

Denna forskningsuppsats bekräftar farhågorna om att träbyggnader över 15-20 våningar är mer känsliga för vindexcitation än vanliga byggnader med betong- och stålstomme. Några lösningar föreslås för att mildra detta vibrationsproblem. När det gäller jämförelsen av modeller från olika standarder för att beräkna vindinducerade accelerationer visar sig spridningen av resultaten vara mycket stor. Från tester på ett stort limträfackverk visar sig förbandsstyvheterna vara viktiga för att förutsäga modala egenskaper och numeriska reduktioner med enkla fjädermodeller ger rättvisande resultat. När det gäller de strukturella modellerna av konceptuella och verkliga höga träbyggnader, betonar numeriska fallstudier vikten av exakt fördelade massor och styvheter hos byggnadselement, förband och icke-strukturella byggnadsdelar, samt behovet av exakta dämpningsvärden.

Abstract [fr]

Le changement climatique et la densification des villes sont deux défis mondiaux majeurs. Dans le domaine de la construction, les bâtiments en bois de grande hauteur sont perçus comme l'une des solutions les plus durables. D'une part la croissance urbaine verticale est économe en énergie et en ressources, d'autre part les produits forestiers stockent le carbone et ont l'un des rapports résistance mécanique/densité les plus élevés. Si la substitution structurelle du bois au béton ou à l’acier dans les immeubles de grande hauteur suscite des craintes pour les problèmes de sécurité incendie, les ingénieurs et les chercheurs s'inquiètent particulièrement de la réponse dynamique des immeubles en bois de grande hauteur à la mode. En effet, du fait de la faible densité du bois, ils sont plus légers, et à hauteur égale, ils pourraient être plus sensibles aux vibrations induites par le vent que les immeubles traditionnels. Pour satisfaire le confort des personnes aux étages supérieurs, la conception des bâtiments en bois de grande hauteur doit tenir compte judicieusement des vibrations induites par le vent. Les architectes et les ingénieurs en structure ont besoin de méthodes de calcul précises et vérifiées, de modèles numériques utiles et d'une bonne connaissance des propriétés dynamiques des bâtiments en bois de grande hauteur.

Premièrement, les travaux de recherche présentés ici tentent d’approfondir la compréhension des phénomènes dynamiques des vibrations induites par le vent dans les immeubles de grande hauteur et d'évaluer la précision des modèles semi-empiriques disponibles pour calculer les accélérations dans la direction du vent. Deuxièmement, ils visent à étudier expérimentalement et numériquement les impacts des paramètres structuraux – masses, rigidités et amortissements – sur la dynamique des structures bois. Finalement, ils suggèrent comment modéliser les bâtiments en bois de grande hauteur pour prédire correctement les propriétés modales et les réponses induites par le vent.

Cette thèse de recherche confirme les inquiétudes selon lesquelles les bâtiments en bois de plus de 15-20 étages sont plus sensibles à l'excitation du vent que les bâtiments traditionnels en béton armé ou en acier, et des solutions sont proposés pour atténuer ce problème vibratoire. Concernant la comparaison de différentes méthodes normalisées pour estimer les accélérations induites par le vent, la grande dispersion des résultats n'est pas négligeable. À partir d'essais expérimentaux sur un grand poteau-treillis en lamellé-collé, les rigidités de connexion s’avèrent importantes pour prédire les propriétés modales et les réductions numériques avec de simples modèles à ressort donnent des résultats acceptables. Concernant la précision des modèles structuraux de bâtiments en bois de grande hauteur conceptuels ou réels, des études de cas numériques soulignent l'importance des répartitions exactes des masses et des rigidités des éléments structuraux, des connexions et des éléments de construction non structuraux, ainsi que la nécessité de valeurs d'amortissement précises.

Place, publisher, year, edition, pages
Växjö: Linnaeus University Press, 2022. p. 82
Series
Lnu Licentiate
Keywords
Tall Timber Building, Wind-Induced vibration, Along-Wind Acceleration, Modal Analysis, Forced Vibration Test, Finite Element Model Reduction, Truss, Semi-Rigid Connection, Bâtiment en Bois de Grande Hauteur, Vibration Induite par le Vent, Accélération Parallèle au Vent, Analyse Modale, Test de Vibration Forcée, Réduction de Modèle aux Eléments finis, Poteau Treillis, Connexion Semi-Rigide, Hög Trähus, Vindinducerad Vibration, Acceleration Längs med Vinden, Modalanalys, Forcerat Vibrationstest, Finita Element Modellreduktion, Fackverk, Halvstyva Förband
National Category
Building Technologies
Research subject
Technology (byts ev till Engineering), Mechanical Engineering; Technology (byts ev till Engineering), Civil engineering
Identifiers
urn:nbn:se:lnu:diva-112927 (URN)978-91-89709-10-2 (ISBN)978-91-89709-11-9 (ISBN)
Presentation
2022-06-09, N1017, Hus N, Växjö, 10:00 (English)
Opponent
Supervisors
Available from: 2022-05-19 Created: 2022-05-19 Last updated: 2023-04-06Bibliographically approved

Open Access in DiVA

No full text in DiVA

Scopus

Authority records

Johansson, MarieLinderholt, AndreasJarnerö, KirsiLandel, Pierre

Search in DiVA

By author/editor
Johansson, MarieLinderholt, AndreasJarnerö, KirsiLandel, Pierre
By organisation
Department of Building TechnologyDepartment of Mechanical Engineering
Building Technologies

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1145 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf