lnu.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Arneth, A.
    et al.
    Niinemets, Ü.
    Pressley, S.
    Bäck, J.
    Forest Ecology, ETH Zürich, Switzerland.
    Hari, P.
    Karl, T.
    Noe, S.
    Prentice, I. C.
    Serça, D.
    Hickler, T.
    Wolf, Annett
    Linnaeus University, The University Administration.
    Smith, B.
    Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO2-isoprene interaction2007In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 7, no 1, p. 31-53Article in journal (Refereed)
    Abstract [en]

    In recent years evidence has emerged that the amount of isoprene emitted from a leaf is affected by the CO2 growth environment. Many - though not all - laboratory experiments indicate that emissions increase significantly at below-ambient CO2 concentrations and decrease when concentrations are raised to above-ambient. A small number of process-based leaf isoprene emission models can reproduce this CO2 stimulation and inhibition. These models are briefly reviewed, and their performance in standard conditions compared with each other and to an empirical algorithm. One of the models was judged particularly useful for incorporation into a dynamic vegetation model framework, LPJ-GUESS, yielding a tool that allows the interactive effects of climate and increasing CO2 concentration on vegetation distribution, productivity, and leaf and ecosystem isoprene emissions to be explored. The coupled vegetation dynamics-isoprene model is described and used here in a mode particularly suited for the ecosystem scale, but it can be employed at the global level as well. Annual and/or daily isoprene emissions simulated by the model were evaluated against flux measurements ( or model estimates that had previously been evaluated with flux data) from a wide range of environments, and agreement between modelled and simulated values was generally good. By using a dynamic vegetation model, effects of canopy composition, disturbance history, or trends in CO2 concentration can be assessed. We show here for five model test sites that the suggested CO2-inhibition of leaf-isoprene metabolism can be large enough to offset increases in emissions due to CO2-stimulation of vegetation productivity and leaf area growth. When effects of climate change are considered atop the effects of atmospheric composition the interactions between the relevant processes will become even more complex. The CO2-isoprene inhibition may have the potential to significantly dampen the expected steep increase of ecosystem isoprene emission in a future, warmer atmosphere with higher CO2 levels; this effect raises important questions for projections of future atmospheric chemistry, and its connection to the terrestrial vegetation and carbon cycle.

  • 2.
    Kerren, Andreas
    et al.
    Linnaeus University, Faculty of Technology, Department of Computer Science.
    Jusufi, Ilir
    University of California, USA.
    Liu, Jiayi
    Linnaeus University, Faculty of Technology, Department of Computer Science.
    Multi-Scale Trend Visualization of Long-Term Temperature Data Sets2014In: Proceedings of SIGRAD 2014, Visual Computing, June 12-13, 2014, Göteborg, Sweden / [ed] M. Obaid, D. Sjölie and M. Fjeld, Linköping University Electronic Press, 2014, p. 91-94Conference paper (Refereed)
    Abstract [en]

    The analysis and presentation of climate observations is a traditional application of various visualization approaches. The available data sets are usually huge and were typically collected over a long period of time. In this paper, we focus on the visualization of a specific aspect of climate data: our visualization tool was primarily developed for providing an overview of temperature measurements for one location over decades or even centuries. In order to support an efficient overview and visual representation of the data, it is based on a region-oriented metaphor that includes various granularity levels and aggregation features. 

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf