lnu.sePublikasjoner
Endre søk
Begrens søket
1 - 4 of 4
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Brodelius, Peter
    Institute of Biotechnology, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Ziirich, Switzerland.
    Permeabilization of Plant Cells for Release of Intracellularly Stored Products: Viability Studies1988Inngår i: Applied Microbiology and Biotechnology, ISSN 0175-7598, E-ISSN 1432-0614, Vol. 27, s. 561-566Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The effects of various chemical substanceson the permeability of plasma membranesand tonoplasts of three suspension cultures (Catharanthusroseus, Thalictrum rugosum and Chenopodiumrubrum) have been studied. The permeabilityof the plasma membrane is monitoredby measuring the activity of the cytosolic enzymeisocitrate dehydrogenase and the permeability ofthe tonoplast is measured by determining the releaseof substances stored in the vacuoles (inorganicphosphate, berberine and betanin for thethree cell lines, respectively). The minimum concentrationrequired for quantitative release of vacuolarproducts have been established for five differentpermeabilization agents. Cell viability islost upon permeabilization except for treatmentof Catharanthus roseus with DMSO and Triton X-100. 

  • 2.
    Dopson, Mark
    et al.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Holmes, David S
    Universidad Andres Bello, Santiago, Chile.
    Metal resistance in acidophilic microorganisms and its significance for biotechnologies.2014Inngår i: Applied Microbiology and Biotechnology, ISSN 0175-7598, E-ISSN 1432-0614, Vol. 98, nr 19, s. 8133-8144Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Extremely acidophilic microorganisms have an optimal pH of <3 and are found in all three domains of life. As metals are more soluble at acid pH, acidophiles are often challenged by very high metal concentrations. Acidophiles are metal-tolerant by both intrinsic, passive mechanisms as well as active systems. Passive mechanisms include an internal positive membrane potential that creates a chemiosmotic gradient against which metal cations must move, as well as the formation of metal sulfate complexes reducing the concentration of the free metal ion. Active systems include efflux proteins that pump metals out of the cytoplasm and conversion of the metal to a less toxic form. Acidophiles are exploited in a number of biotechnologies including biomining for sulfide mineral dissolution, biosulfidogenesis to produce sulfide that can selectively precipitate metals from process streams, treatment of acid mine drainage, and bioremediation of acidic metal-contaminated milieux. This review describes how acidophilic microorganisms tolerate extremely high metal concentrations in biotechnological processes and identifies areas of future work that hold promise for improving the efficiency of these applications.

  • 3. Sode, K
    et al.
    Brodelius, Peter
    Institute of Biotechnology, Swiss Federal Institute of Technology, Hönggerberg, CH-8093 Zfirich, Switzerland.
    Meussdoerffer, F
    Mosbach, K
    Ernst, J
    Continuous Production of Somatomedin C with Immobilized Transformed Yeast Cells1988Inngår i: Applied Microbiology and Biotechnology, ISSN 0175-7598, E-ISSN 1432-0614, Vol. 28, nr 3, s. 215-221Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Yeast cells producing the growth hormonesomatomedin C (SMC) were constructedand applied in the immobilized form continuouslyfor a period of over 10 days in a flowthroughbioreactor. The construction of theMF~I-SMC fusion vector p336/l is given as wellas the results of the influence of various nutrientseffecting hormone production. Immobilization ofthe transformed yeast cells is described and theirapplication in a continuous bioreactor system.This study demonstrates the feasibility of a longtermand high-level hormone production by immobilizedtransformed yeast. The SMC productivitiesof free cells in batch and immobilized cellsunder continuous conditions were 0.2--0.3 and0.5--0.6 mg per g wet cells and day, respectively. 

  • 4. Zammit, Carla M
    et al.
    Mangold, Stefanie
    Jonna, Venkateswara rao
    Mutch, Lesley A
    Watling, Helen R
    Dopson, Mark
    Linnéuniversitetet, Fakultetsnämnden för naturvetenskap och teknik, Institutionen för naturvetenskap, NV. Department of Molecular Biology, Umeå University, Umeå, Sweden .
    Watkin, Elizabeth L J
    Bioleaching in brackish waters--effect of chloride ions on the acidophile population and proteomes of model species.2012Inngår i: Applied Microbiology and Biotechnology, ISSN 0175-7598, E-ISSN 1432-0614, Vol. 93, nr 1, s. 319-329Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    High concentrations of chloride ions inhibit the growth of acidophilic microorganisms used in biomining, a problem particularly relevant to Western Australian and Chilean biomining operations. Despite this, little is known about the mechanisms acidophiles adopt in order to tolerate high chloride ion concentrations. This study aimed to investigate the impact of increasing concentrations of chloride ions on the population dynamics of a mixed culture during pyrite bioleaching and apply proteomics to elucidate how two species from this mixed culture alter their proteomes under chloride stress. A mixture consisting of well-known biomining microorganisms and an enrichment culture obtained from an acidic saline drain were tested for their ability to bioleach pyrite in the presence of 0, 3.5, 7, and 20 g L(-1) NaCl. Microorganisms from the enrichment culture were found to out-compete the known biomining microorganisms, independent of the chloride ion concentration. The proteomes of the Gram-positive acidophile Acidimicrobium ferrooxidans and the Gram-negative acidophile Acidithiobacillus caldus grown in the presence or absence of chloride ions were investigated. Analysis of differential expression showed that acidophilic microorganisms adopted several changes in their proteomes in the presence of chloride ions, suggesting the following strategies to combat the NaCl stress: adaptation of the cell membrane, the accumulation of amino acids possibly as a form of osmoprotectant, and the expression of a YceI family protein involved in acid and osmotic-related stress.

1 - 4 of 4
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf