lnu.sePublications
Change search
Refine search result
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bonakdar, Farshid
    et al.
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Dodoo, Ambrose
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Gustavsson, Leif
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Cost-optimum analysis of building fabric renovation in a Swedish multi-story residential building2014In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 84, p. 662-673Article in journal (Refereed)
    Abstract [en]

    In this study, we analysed the cost-optimum level of building fabric elements renovation in a multi-story residential building. We calculated final energy use for space heating of the building considering a wide range of energy efficiency measures, for exterior walls, basement walls, attic floor and windows. Different extra insulation thicknesses for considered opaque elements and different U-values for new windows were used as energy efficiency measures. We calculated difference between the marginal saving of energy cost for space heating and the investment cost of implemented energy efficiency measures, in order to find the cost-optimum measure for each element. The implications of building lifespans, annual energy price increase and discount rate on the optimum measure were also analysed. The results of the analysis indicate that the contribution of energy efficiency measures to the final energy use reduces, significantly, by increasing the thickness of extra insulation and by reducing the U-value of new windows. We considered three scenarios of business as usual (BAU), intermediate and sustainability, considering different discount rates and energy price increase. The results of this analysis suggest that the sustainability scenario may offer, approximately, 100% increase in the optimum thickness of extra insulation compare to BAU scenario. However, the implication of different lifespans of 40, 50 or 60 years, on the optimum measure appears to be either negligible or very small, depending on the chosen scenario. We also calculated the corresponding U-value of the optimum measures in order to compare them with the current Swedish building code requirements and passive house criteria. The results indicate that all optimum measures meet the Swedish building code. None of the optimum measures, however, meet the passive house criteria in BAU scenario. This study suggests that the employed method of building renovation cost-optimum analyses can be also applied on new building construction to find the cost-optimum design from energy conservation point of view.

  • 2.
    Dodoo, Ambrose
    et al.
    Mid Sweden University.
    Gustavsson, Leif
    Linnaeus University, Faculty of Science and Engineering, School of Engineering. Mid Sweden University.
    Sathre, Roger
    Mid Sweden University.
    Building energy-efficiency standards in a life cycle primary energy perspective2011In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 43, no 7, p. 1589-1597Article in journal (Refereed)
    Abstract [en]

    In this study we analyze the life cycle primary energy use of a wood-frame apartment building designed to meet the current Swedish building code, the Swedish building code of 1994 or the passive house standard, and heated with district heat or electric resistance heating. The analysis includes the primary energy use during the production, operation and end-of-life phases. We find that an electric heated building built to the current building code has greater life cycle primary energy use relative to a district heated building, although the standard for electric heating is more stringent. Also, the primary energy use for an electric heated building constructed to meet the passive house standard is substantially higher than for a district heated building built to the Swedish building code of 1994. The primary energy for material production constitutes 5% of the primary energy for production and space heating and ventilation of an electric heated building built to meet the 1994 code. The share of production energy increases as the energy-efficiency standard of the building improves and when efficient energy supply is used, and reaches 30% for a district heated passive house. This study shows the significance of a life cycle primary energy perspective and the choice of heating system in reducing energy use in the built environment.

  • 3.
    Dodoo, Ambrose
    et al.
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Gustavsson, Leif
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Sathre, Roger
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Lifecycle carbon implications of conventional and low-energy multi-storey timber building systems2014In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 82, p. 194-210Article in journal (Refereed)
    Abstract [en]

    A consequential-based lifecycle approach is used here to explore the carbon implications of conventional and low-energy versions of three timber multi-storey building systems. The building systems are made of massive wood using cross laminated timber (CLT) elements; beam-and-column using glulam and laminated veneer lumber (LVL) elements; and prefabricated modules using light-frame volume elements. The analysis encompasses the entire resource chains during the lifecycle of the buildings, and tracks the flows of carbon from fossil energy, industrial process reactions, changes in carbon stocks in materials, and potential avoided fossil emissions from substitution of fossil energy by woody residues. The results show that the low-energy version of the CLT building gives the lowest lifecycle carbon emission while the conventional version of the beam-and-column building gives the highest lifecycle emission. Compared to the conventional designs, the low-energy designs reduce the total carbon emissions (excluding from tap water heating and household and facility electricity) by 9%, 8% and 9% for the CLT, beam-and-column and modular systems, respectively, for a 50-year lifespan located in Växjö. The relative significance of the construction materials to the fossil carbon emission varies for the different energy-efficiency levels of the buildings, with insulation dominating for the low-energy houses and plasterboard dominating for the conventional houses.

  • 4.
    Dodoo, Ambrose
    et al.
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Gustavsson, Leif
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Sathre, Roger
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Lifecycle primary energy analysis of low-energy timber building systems for multi-story residential buildings2014In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 81, p. 84-97Article in journal (Refereed)
    Abstract [en]

    A system-wide lifecycle approach is used here to explore the primary energy implications of three timber building systems for a multi-storey building designed to a high energy-efficiency level. The three building systems are: cross laminated timber, beam -and-column, and modular prefabricated systems. The analysis considers the energy and material flows in the production, use and post-use lifecycle stages of the buildings. The effects of insulation material options and the contribution of different building elements to the production energy for the buildings are explored. The results show that external and internal walls account for the biggest share of the production energy for all building systems and its contribution is comparable for the different systems. In contrast, there is significant variation in the production primary energy for the roof-ceilings and intermediate floor-ceilings for the different building systems. Overall, the cross laminated timber building system gives the lowest lifecycle primary energy balance, as this building is insulated with stone wool and has better airtightness in contrast to the other building systems which are insulated with glass wool and have lower airtightness performance. With improved airtightness and insulation substitution, the total primary energy use for the beam-and-column and modular building systems can be reduced by 7% and 9%, respectively.

  • 5.
    Dodoo, Ambrose
    et al.
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Gustavsson, Leif
    Linnaeus University, Faculty of Science and Engineering, School of Engineering. Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Sathre, Roger
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Primary energy implications of ventilation heat recovery in residential buildings2011In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 43, no 7, p. 1566-1572Article in journal (Refereed)
    Abstract [en]

    In this study, we analyze the impact of ventilation heat recovery (VHR) on the operation primary energy use in residential buildings. We calculate the operation primary energy use of a case-study apartment building built to conventional and passive house standard, both with and without VHR, and using different end-use heating systems including electric resistance heating, bedrock heat pump and district heating based on combined heat and power (CHP) production. VHR increases the electrical energy used for ventilation and reduces the heat energy used for space heating. Significantly greater primary energy savings is achieved when VHR is used in resistance heated buildings than in district heated buildings. For district heated buildings the primary energy savings are small. VHR systems can give substantial final energy reduction, but the primary energy benefit depends strongly on the type of heat supply system, and also on the amount of electricity used for VHR and the airtightness of buildings. This study shows the importance of considering the interactions between heat supply systems and VHR systems to reduce primary energy use in buildings.

  • 6.
    Dodoo, Ambrose
    et al.
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Tettey, Uniben Yao Ayikoe
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Gustavsson, Leif
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    On input parameters, methods and assumptions for energy balance and retrofit analyses for residential buildings2017In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 137, p. 76-89Article in journal (Refereed)
    Abstract [en]

    In this study we explore key parameter values, methods and assumptions used for energy balance modelling of residential buildings in the Swedish context and analyse their effects on calculated energy balance of a typical multi-storey building from 1970s and on energy savings of energy efficiency retrofit measures. The parameters studied are related to microclimate, building envelope, occupancy behaviour, ventilation, and heat gains from electric appliances and persons. Our study shows that assumed indoor air temperature, internal heat gains and efficiency of ventilation heat recovery units have significant effect on the simulated energy performance of the studied building and energy efficiency measures. Of the considered microclimate parameter values and assumptions, the outdoor temperature, ground solar reflection and window shading have significant impact on the simulated space heating and cooling demands. On the contrary, the simulated energy performances are less affected by the variations in air pressure outside and the percentage of wind load that hits the building. We found that input data and assumptions used for energy balance calculations and energy saving analyses vary significantly in the Swedish context. These result in significantly different calculated final energy performance of buildings and energy efficiency measures. To inform accurate analysis of energy performance of building and energy saving measures, input parameters used in simulation models need to be appropriate.

  • 7.
    Gustavsson, Leif
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Engineering. Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Dodoo, Ambrose
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Truong, Nguyen Le
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Danielski, Itai
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Primary energy implications of end-use energy efficiency measures in district heated buildings2011In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 43, no 1, p. 38-48Article in journal (Refereed)
    Abstract [en]

    In this study we explore the effects of end-use energy efficiency measures on different district heat production systems with combined heat and power (CHP) plants for base load production and heat-only boilers for peak and medium load productions. We model four minimum cost district heat production systems based on four environmental taxation scenarios, plus a reference district heat system used in Östersund, Sweden. We analyze the primary energy use and the cost of district heat production for each system. We then analyze the primary energy implications of end-use energy efficiency measures applied to a case-study apartment building, taking into account the reduced district heat demand, reduced cogenerated electricity and increased electricity use due to ventilation heat recovery. We find that district heat production cost in optimally-designed production systems is not sensitive to environmental taxation. The primary energy savings of end-use energy efficiency measures depend on the characteristics of the district heat production system and the type of end-use energy efficiency measures. Energy efficiency measures that reduce more of peak load than base load production give higher primary energy savings, because the primary energy efficiency is higher for CHP plants than for boilers. This study shows the importance of analyzing both the demand and supply sides as well as their interaction in order to minimize the primary energy use of district heated buildings.

  • 8.
    Gustavsson, Leif
    et al.
    Mittuniversitetet, Institutionen för teknik, fysik och matematik.
    Joelsson, Anna
    Mittuniversitetet, Institutionen för teknik, fysik och matematik.
    Energy conservation and conversion of electrical heating systems in detached houses2007In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 39, no 6, p. 717-726Article in journal (Refereed)
    Abstract [en]

    In this study, a Swedish house built in 1974, heated with resistance heaters was analysed. Different options for changing the heating system and electricity production were compared for this type of detached house, assuming coal-based electricity production as a reference. Changes in the fuel used, the electricity production technology, the end-use heating technology and the heat demand were analysed. The aim was to show how these different parts of the energy system interact and to evaluate the cost-effectiveness of reducing CO2 emission and primary energy use by different combinations of changes. The results showed that the CO2 emission and primary energy use could be reduced by 95 and 70%, respectively, without increased heating costs in a national economic perspective. The choice of end-use heating system had a greater influence than the energy conservation measures on the parameters studied. The energy conservation measures were less cost-effective in combination with the more energy-efficient heating systems, although the fact that they reduced the heat demand, and thus also the investment cost of the new heating system, was taken into account.

  • 9.
    Gustavsson, Leif
    et al.
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Joelsson, Anna
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Life cycle primary energy analysis of residential buildings2010In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 42, no 2, p. 210-220Article in journal (Refereed)
    Abstract [en]

    The space heating demand of residential buildings can be decreased by improved insulation, reduced air leakage and by heat recovery from ventilation air. However, these measures result in an increased use of materials. As the energy for building operation decreases, the relative importance of the energy used in the production phase increases and influences optimization aimed at minimizing the Life cycle energy use. The Life cycle primary energy use of buildings also depends on the energy supply systems. In this work we analyse primary energy use and CO2 emission for the production and operation of conventional and low-energy residential buildings. Different types of energy supply systems are included in the analysis. We show that for a conventional and a low-energy building the primary energy use for production can be up to 45% and 60%, respectively, of the total, depending on the energy supply system, and with larger variations for conventional buildings. The primary energy used and the CO2 emission resulting from production are lower for wood-framed constructions than for concrete-framed constructions. The primary energy use and the CO2 emission depend strongly on the energy supply, for both conventional and low-energy buildings. For example, a single-family house from the 1970s heated with biomass-based district heating with cogeneration has 70% lower operational primary energy use than if heated with fuel-based electricity. The specific primary energy use with district heating was 40% lower than that of an electrically heated passive row house.

  • 10.
    Gustavsson, Leif
    et al.
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Joelsson, Anna
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Sathre, Roger
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Life cycle primary energy use and carbon emission of an eight-storey wood-framed apartment building2010In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 42, no 2, p. 230-242Article in journal (Refereed)
    Abstract [en]

    In this study the life cycle primary energy use and carbon dioxide (CO2) emission of an eight-storey wood-framed apartment building are analyzed. All life cycle phases are included, including acquisition and processing of materials, on-site construction, building operation, demolition and materials disposal. The calculated primary energy use includes the entire energy system chains, and carbon flows are tracked including fossil fuel emissions, process emissions, carbon stocks in building materials, and avoided fossil emissions due to biofuel substitution. The results show that building operation uses the largest share of life cycle energy use, becoming increasingly dominant as the life span of the building increases. The type of heating system strongly influences the primary energy use and CO2 emission; a biomass-based system with cogeneration of district heat and electricity achieves low primary energy use and very low CO2 emissions. Using biomass residues from the wood products chain to substitute for fossil fuels significantly reduces net CO2 emission. Excluding household tap water and electricity, a negative life cycle net CO2 emission can be achieved due to the wood-based construction materials and biomass-based energy supply system. This study shows the importance of using a life cycle perspective when evaluating primary energy and climatic impacts of buildings.

  • 11.
    Sathre, Roger
    et al.
    Mittuniversitetet, Institutionen för teknik, fysik och matematik.
    Gustavsson, Leif
    Mittuniversitetet, Institutionen för teknik, fysik och matematik.
    Effects of energy and carbon taxes on building material competitiveness2007In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 39, no 4, p. 488-494Article in journal (Refereed)
    Abstract [en]

    The relations between building material competitiveness and economic instruments for mitigating climate change are explored in this bottom-up study. The effects of carbon and energy taxes on building material manufacturing cost and total building construction cost are modelled, analysing individual materials as well as comparing a wood-framed building to a reinforced concrete-framed building. The energy balances of producing construction materials made of wood, concrete, steel, and gypsum are described and quantified. For wood lumber, more usable energy is available as biomass residues than is consumed in the processing steps. The quantities of biofuels made available during the production of wood materials are calculated, and the cost differences between using these biofuels and using fossil fuels are shown under various tax regimes. The results indicate that higher energy and carbon taxation rates increase the economic competitiveness of wood construction materials. This is due to both the lower energy cost for material manufacture, and the increased economic value of biomass by-products used to replace fossil fuel.

  • 12.
    Tettey, Uniben Yao Ayikoe
    et al.
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Dodoo, Ambrose
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Gustavsson, Leif
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Effect of different frame materials on the primary energy use of a multi storey residential building in a life cycle perspective2019In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 185, p. 259-271Article in journal (Refereed)
    Abstract [en]

    Primary energy implications over the life cycle of a multi storey residential building with different building systems are explored here. The main structural materials of the buildings include precast concrete, cross laminated timber (CLT) and prefabricated timber modules (modular). The analysis covers energy and material flows from different life cycle phases of the building versions, designed to meet the energy performance of the Swedish building code (BBR) and passive house criteria. The CLT and modular buildings were found to result in lower production primary energy use and higher biomass residues compared to the concrete alternative. The heating value of the recoverable biomass residues from the production phase of the CLT building is significantly larger than the primary energy required for its production. Primary energy use for production and construction constitutes 20-30% and 36-47% of the total primary energy use for production, construction, space heating, ventilation and demolition for the BBR and passive buildings, respectively. Space heating with combined heat and power (CHP) and ventilation electricity for the BBR and passive building versions form 70-79% and 52-63%, respectively, of the total primary energy use for production, construction, space heating, ventilation and demolition for a lifespan of 80 years. The CLT and modular buildings give 20-37% and 9-17% lower total life cycle primary energy use, respectively, than the concrete alternative when space heating is from CHP. (C) 2019 Elsevier B.V. All rights reserved.

  • 13.
    Tettey, Uniben Yao Ayikoe
    et al.
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Dodoo, Ambrose
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Gustavsson, Leif
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Effects of different insulation materials on primary energy and CO2 emission of a multi-storey residential building2014In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 82, p. 369-377Article in journal (Refereed)
    Abstract [en]

    In this study, we analyzed the implications of various insulation materials on the primary energy and CO2emission for material production of a residential building. We modeled changes to the original design ofthe building to achieve reference buildings to energy-efficiency levels of the Swedish building code of2012 or the Swedish Passivhus 2012 criteria. We varied the insulation materials in different parts of thereference buildings from mineral rock wool to glass wool, cellulose fiber, expanded polystyrene or foamglass. We compared the primary energy use and CO2emission from material production of functionallyequivalent reference and optimum versions of the building. The results showed a reduction of about 6–7%in primary energy use and 6–8% in CO2emission when the insulation material in the reference buildingsis changed from rock wool to cellulose fiber in the optimum versions. Also, the total fossil fuel use for onlyinsulation material production was reduced by about 39%. This study suggests that enhancing materialproduction technologies by reducing fossil fuel-use and increasing renewable energy sources, as wellas careful material choice with renewable-based raw materials can contribute significantly in reducingprimary energy use and GHG emission in the building sector.

1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf