lnu.sePublications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Eriksson, Thomas
    et al.
    Graz University of Technology, Austria ; Royal Institute of Technology (KTH).
    Kroon, Martin
    Royal Institute of Technology (KTH).
    Holzapfel, Gerhard A.
    Graz University of Technology, Austria ; Royal Institute of Technology (KTH).
    Influence of medial collagen organization and in-situ axial stretch on saccular cerebral aneurysm growth2009In: Journal of Biomechanical Engineering, ISSN 0148-0731, E-ISSN 1528-8951, Vol. 131, no 10, article id 101010Article in journal (Refereed)
    Abstract [en]

    A model for saccular cerebral aneurysm growth, proposed by Kroon and Holzapfel (2007, "A Model for Saccular Cerebral Aneurysm Growth in a Human Middle Cerebral Artery," J. Theor. Biol., 247, pp. 775-787; 2008, "Modeling of Saccular Aneurysm Growth in a Human Middle Cerebral Artery," ASME J. Biomech. Eng., 130, p. 051012), is further investigated. A human middle cerebral artery is modeled as a two-layer cylinder where the layers correspond to the media and the adventitia. The immediate loss of media in the location of the aneurysm is taken to be responsible for the initiation of the aneurysm growth. The aneurysmis regarded as a development of the adventitia, which is composed of several distinct layers of collagen fibers perfectly aligned in specified directions. The collagen fibers are the only load-bearing constituent in the aneurysm wall; their production and degradation depend on the stretch of the wall and are responsible for the aneurysm growth. The anisotropy of the surrounding media was modeled using the strain-energy function proposed by Holzapfel et al. (2000, "A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models," J. Elast., 61, pp. 1-48), which is valid for an elastic material with two families of fibers. It was shown that the inclusion of fibers in the media reduced the maximum principal Cauchy stress and the maximum shear stress in the aneurysm wall. The thickness increase in the aneurysm wall due to material growth was also decreased. Varying the fiber angle in the media from a circumferential direction to a deviation of 10 deg from the circumferential direction did, however, only show a little effect. Altering the axial in situ stretch of the artery had a much larger effect in terms of the steady-state shape of the aneurysm and the resulting stresses in the aneurysm wall. The peak values of the maximum principal stress and the thickness increase both became significantly higher for larger axial stretches.

  • 2.
    Kroon, Martin
    Royal Institute of Technology (KTH).
    Modeling of fibroblast-controlled strengthening and remodeling of uniaxially constrained collagen gels2010In: Journal of Biomechanical Engineering, ISSN 0148-0731, E-ISSN 1528-8951, Vol. 132, no 11, article id 111008Article in journal (Refereed)
    Abstract [en]

    A theoretical model for the remodeling of collagen gels is proposed. The collagen fabric is modeled as a network of collagen fibers, which in turn are composed of collagen fibrils. In the model, the strengthening of collagen fabric is accomplished by fibroblasts, which continuously recruit and attach more collagen fibrils to existing collagen fibers. The fibroblasts also accomplish a reorientation of collagen fibers. Fibroblasts are assumed to reorient collagen fibers toward the direction of maximum material stiffness. The proposed model is applied to experiments in which fibroblasts were inserted into a collagen gel. The model is able to predict the force-strain curves for the experimental collagen gels, and the final distribution of collagen fibers also agrees qualitatively with the experiments.

  • 3.
    Kroon, Martin
    et al.
    Royal Institute of Technology .
    Holzapfel, Gerhard
    Royal Institute of Technology ; Graz University of Technology, Austria.
    Modelling of saccular aneurysm growth in a human middle cerebral artery2008In: Journal of Biomechanical Engineering, ISSN 0148-0731, E-ISSN 1528-8951, Vol. 130, no 5, article id 051012Article in journal (Refereed)
    Abstract [en]

    Saccular aneurysm growth in a human middle cerebral artery is modeled. The aneurysm growth model was presented in a companion paper by Kroon and Holzapfel ("A Model for Saccular Cerebral Aneurysm Growth by Collagen Fibre Remodelling," J. Theor. Biol., in press) and was assessed there for axisymmetric growth. The aneurysm growth model is now evaluated for a more realistic setting. The middle cerebral artery is modeled as a two-layered cylinder, where the layers correspond to the media and the adventitia. An instant loss of the media in a region of the artery wall initiates the growth of the saccular aneurysm. The aneurysm wall is assumed to be a development of the adventitia of the original healthy artery, and collagen is assumed to be the only load-bearing constituent in the adventitia and in the aneurysm wall. The collagen is organized in a number of distinct layers where fibers in a specific layer are perfectly aligned in a certain fiber direction. The production of new collagen is taken to depend on the stretching of the aneurysm wall, and the continuous remodeling of the collagen fibers is responsible for the aneurysm growth. The general behavior of the growth model is investigated and also the influence of the structural organization of the collagen fabric. The analysis underlines the fact that the material behavior of aneurysmal tissue cannot be expected to be isotropic. The model predictions agree well with clinical and experimental results, for example, in terms of aneurysm size and shape, wall stress levels, and wall thickness.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf