lnu.sePublikasjoner
Endre søk
Begrens søket
1 - 37 of 37
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Abbasi, R.
    et al.
    Abdou, Y.
    Ackermann, M.
    Adams, J.
    Aguilar, J. A.
    Ahlers, M.
    Andeen, K.
    Auffenberg, J.
    Bai, X.
    Baker, M.
    Barwick, S. W.
    Bay, R.
    Alba, J. L. Bazo
    Beattie, K.
    Beatty, J. J.
    Bechet, S.
    Becker, J. K.
    Becker, K. -H
    Benabderrahmane, M. L.
    Berdermann, J.
    Berghaus, P.
    Berley, D.
    Bernardini, E.
    Bertrand, D.
    Besson, D. Z.
    Bissok, M.
    Blaufuss, E.
    Boersma, D. J.
    Bohm, C.
    Bolmont, J.
    Boeser, S.
    Botner, O.
    Bradley, L.
    Braun, J.
    Breder, D.
    Castermans, T.
    Chirkin, D.
    Christy, B.
    Clem, J.
    Cohen, S.
    Cowen, D. F.
    D'Agostino, M. V.
    Danninger, M.
    Day, C. T.
    De Clercq, C.
    Demiroers, L.
    Depaepe, O.
    Descamps, F.
    Desiati, P.
    de Vries-Uiterweerd, G.
    DeYoung, T.
    Diaz-Velez, J. C.
    Dreyer, J.
    Dumm, J. P.
    Duvoort, M. R.
    Edwards, W. R.
    Ehrlich, R.
    Eisch, J.
    Ellsworth, R. W.
    Engdegard, O.
    Euler, S.
    Evenson, P. A.
    Fadiran, O.
    Fazely, A. R.
    Feusels, T.
    Filimonov, K.
    Finley, C.
    Foerster, M. M.
    Fox, B. D.
    Franckowiak, A.
    Franke, R.
    Gaisser, T. K.
    Gallagher, J.
    Ganugapati, R.
    Gerhardt, L.
    Gladstone, L.
    Goldschmidt, A.
    Goodman, J. A.
    Gozzini, R.
    Grant, D.
    Griesel, T.
    Gross, A.
    Grullon, S.
    Gunasingha, R. M.
    Gurtner, M.
    Ha, C.
    Hallgren, A.
    Halzen, F.
    Han, K.
    Hanson, K.
    Hasegawa, Y.
    Heise, J.
    Helbing, K.
    Herquet, P.
    Hickford, S.
    Hill, G. C.
    Hoffman, K. D.
    Hoshina, K.
    Hubert, D.
    Huelsnitz, W.
    Huelss, J. -P
    Hulth, P. O.
    Hultqvist, K.
    Hussain, S.
    Imlay, R. L.
    Inaba, M.
    Ishihara, A.
    Jacobsen, J.
    Japaridze, G. S.
    Johansson, H.
    Joseph, J. M.
    Kampert, K. -H
    Kappes, A.
    Karg, T.
    Karle, A.
    Kelley, J. L.
    Kenny, P.
    Kiryluk, J.
    Kislat, F.
    Klein, S. R.
    Klepser, S.
    Knops, S.
    Kohnen, G.
    Kolanoski, H.
    Koepke, L.
    Kowalski, M.
    Kowarik, T.
    Krasberg, M.
    Kuehn, K.
    Kuwabara, T.
    Labare, M.
    Lafebre, S.
    Laihem, K.
    Landsman, H.
    Lauer, R.
    Leich, H.
    Lennarz, D.
    Lucke, A.
    Lundberg, J.
    Luenemann, J.
    Madsen, J.
    Majumdar, P.
    Maruyama, R.
    Mase, K.
    Matis, H. S.
    McParland, C. P.
    Meagher, K.
    Merck, M.
    Meszaros, P.
    Middell, E.
    Milke, N.
    Miyamoto, H.
    Mohr, A.
    Montaruli, T.
    Morse, R.
    Movit, S. M.
    Muenich, K.
    Nahnhauer, R.
    Nam, J. W.
    Niessen, P.
    Nygren, D. R.
    Odrowski, S.
    Olivas, A.
    Olivo, M.
    Ono, M.
    Panknin, S.
    Patton, S.
    de los Heros, C. Perez
    Petrovic, J.
    Piegsa, A.
    Pieloth, D.
    Pohl, Arvid
    Linnéuniversitetet, Fakultetsnämnden för naturvetenskap och teknik, Institutionen för datavetenskap, fysik och matematik, DFM.
    Porrata, R.
    Potthoff, N.
    Price, P. B.
    Prikockis, M.
    Przybylski, G. T.
    Rawlins, K.
    Redl, P.
    Resconi, E.
    Rhode, W.
    Ribordy, M.
    Rizzo, A.
    Rodrigues, J. P.
    Roth, P.
    Rothmaier, F.
    Rott, C.
    Roucelle, C.
    Rutledge, D.
    Ryckbosch, D.
    Sander, H. -G
    Sarkar, S.
    Satalecka, K.
    Schlenstedt, S.
    Schmidt, T.
    Schneider, D.
    Schukraft, A.
    Schulz, O.
    Schunck, M.
    Seckel, D.
    Semburg, B.
    Seo, S. H.
    Sestayo, Y.
    Seunarine, S.
    Silvestri, A.
    Slipak, A.
    Spiczak, G. M.
    Spiering, C.
    Stamatikos, M.
    Stanev, T.
    Stephens, G.
    Stezelberger, T.
    Stokstad, R. G.
    Stoufer, M. C.
    Stoyanov, S.
    Strahler, E. A.
    Straszheim, T.
    Sulanke, K. -H
    Sullivan, G. W.
    Swillens, Q.
    Taboada, I.
    Tarasova, O.
    Tepe, A.
    Ter-Antonyan, S.
    Terranova, C.
    Tilav, S.
    Tluczykont, M.
    Toale, P. A.
    Tosi, D.
    Turcan, D.
    van Eijndhoven, N.
    Vandenbroucke, J.
    Van Overloop, A.
    Vogt, C.
    Voigt, B.
    Walck, C.
    Waldenmaier, T.
    Walter, M.
    Wendt, C.
    Westerhoff, S.
    Whitehorn, N.
    Wiebusch, C. H.
    Wiedemann, A.
    Wikstrom, G.
    Williams, D. R.
    Wischnewski, R.
    Wissing, H.
    Woschnagg, K.
    Xu, X. W.
    Yodh, G.
    Yoshida, S.
    Measurement of sound speed vs. depth in South Pole ice for neutrino astronomy2010Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 33, nr 5-6, s. 277-286Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at similar to 5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background. (C) 2010 Elsevier B.V. All rights reserved.

  • 2. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Ampe, J.
    Anderson, B.
    Atwood, W. B.
    Axelsson, M.
    Bagagli, R.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bartelt, J.
    Bastieri, D.
    Baughman, B. M.
    Bechtol, K.
    Bederede, D.
    Bellardi, F.
    Bellazzini, R.
    Belli, F.
    Berenji, B.
    Bisello, D.
    Bissaldi, E.
    Bloom, E. D.
    Bogaert, G.
    Bogart, J. R.
    Bonamente, E.
    Borgland, A. W.
    Bourgeois, P.
    Bouvier, A.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Burnett, T. H.
    Busetto, G.
    Caliandro, G. A.
    Cameron, R. A.
    Campell, M.
    Caraveo, P. A.
    Carius, Staffan
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Carlson, P.
    Casandjian, J. M.
    Cavazzuti, E.
    Ceccanti, M.
    Cecchi, C.
    Charles, E.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Chipaux, R.
    Cillis, A. N.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Condamoor, S.
    Conrad, J.
    Corbet, R.
    Cutini, S.
    Davis, D. S.
    DeKlotz, M.
    Dermer, C. D.
    de Angelis, A.
    de Palma, F.
    Digel, S. W.
    Dizon, P.
    Dormody, M.
    Silva, E. D. E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Edmonds, Y.
    Fabiani, D.
    Farnier, C.
    Favuzzi, C.
    Ferrara, E. C.
    Ferreira, O.
    Fewtrell, Z.
    Flath, D. L.
    Fleury, P.
    Focke, W. B.
    Fouts, K.
    Frailis, M.
    Freytag, D.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Garganov, F.
    Gasparrini, D.
    Gehrelscao, N.
    Germani, S.
    Giebels, B.
    Giglietto, N.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Goodman, J.
    Grenier, I. A.
    Grondin, M. H.
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Hakimi, M.
    Haller, G.
    Hanabata, Y.
    Hart, P. A.
    Hascall, P.
    Hays, E.
    Huffer, M.
    Hughes, R. E.
    Johannesson, G.
    Johnson, A. S.
    Johnson, R. P.
    Johnson, T. J.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kavelaars, A.
    Kelly, H.
    Kerr, M.
    Klamra, W.
    Knodlseder, J.
    Kocian, M. L.
    Kuehn, F.
    Kuss, M.
    Latronico, L.
    Lavalley, C.
    Leas, B.
    Lee, B.
    Lee, S. H.
    Lemoine-Goumard, M.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Lung, D. K.
    Madejski, G. M.
    Makeev, A.
    Marangelli, B.
    Marchetti, M.
    Massai, M. M.
    May, D.
    Mazzenga, G.
    Mazziotta, M. N.
    McEnery, J. E.
    McGlynn, S.
    Meurer, C.
    Michelson, P. F.
    Minuti, M.
    Mirizzi, N.
    Mitra, P.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Mongelli, M.
    Monte, C.
    Monzani, M. E.
    Moretti, E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nelson, D.
    Nilsson, L.
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Nishino, S.
    Nolan, P. L.
    Nuss, E.
    Ohno, M.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Paccagnella, A.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Picozza, P.
    Pinchera, M.
    Piron, F.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Rapposelli, E.
    Raynor, W.
    Razzano, M.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Reyes, L. C.
    Ritz, S.
    Robinson, S.
    Rochester, L. S.
    Rodriguez, A. Y.
    Romani, R. W.
    Roth, M.
    Ryde, F.
    Sacchetti, A.
    Sadrozinski, H. F. W.
    Saggini, N.
    Sanchez, D.
    Sander, A.
    Sapozhnikov, L.
    Saxton, O. H.
    Parkinson, P. M. S.
    Sellerholm, A.
    Sgro, C.
    Siskind, E. J.
    Smith, D. A.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Starck, J. L.
    Stephens, T. E.
    Strickman, M. S.
    Strong, A. W.
    Sugizaki, M.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Tenze, A.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Tibolla, O.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Turri, M.
    Usher, T. L.
    Vilchez, N.
    Virmani, N.
    Vitale, V.
    Wai, L. L.
    Waite, A. P.
    Wang, P.
    Winer, B. L.
    Wood, D. L.
    Wood, K. S.
    Yasuda, H.
    Ylinen, T.
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Ziegler, M.
    The on-orbit calibration of the Fermi Large Area Telescope2009Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 32, nr 3-4, s. 193-219Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope began its on-orbit operations on June 23, 2008. Calibrations, defined in a generic sense, correspond to synchronization of trigger signals, optimization of delays for latching data, determination of detector thresholds, gains and responses, evaluation of the perimeter of the South Atlantic Anomaly (SAA), measurements of live time, of absolute time, and internal and spacecraft boresight alignments. Here we describe on-orbit calibration results obtained using known astrophysical sources, galactic cosmic rays, and charge injection into the front-end electronics of each detector. Instrument response functions will be described in a separate publication. This paper demonstrates the stability of calibrations and describes minor changes observed since launch. These results have been used to calibrate the LAT datasets to be publicly released in August 2009. (C) 2009 Elsevier B.V. All rights reserved.

  • 3. Abramowski, A.
    et al.
    Acero, F.
    Aharonian, F.
    Akhperjanian, A. G.
    Anton, G.
    Barnacka, A.
    de Almeida, U. Barres
    Bazer-Bachi, A. R.
    Becherini, Yvonne
    Becker, J.
    Behera, B.
    Bernloehr, K.
    Bochow, A.
    Boisson, C.
    Bolmont, J.
    Bordas, P.
    Borrel, V.
    Brucker, J.
    Brun, F.
    Brun, P.
    Buehler, R.
    Bulik, T.
    Buesching, I.
    Carrigan, S.
    Casanova, S.
    Cerruti, M.
    Chadwick, P. M.
    Charbonnier, A.
    Chaves, R. C. G.
    Cheesebrough, A.
    Chounet, L. -M
    Clapson, A. C.
    Coignet, G.
    Conrad, J.
    Dalton, M.
    Daniel, M. K.
    Davids, I. D.
    Degrange, B.
    Deil, C.
    Dickinson, H. J.
    Djannati-Atai, A.
    Domainko, W.
    Drury, L. O 'C.
    Dubois, F.
    Dubus, G.
    Dyks, J.
    Dyrda, M.
    Egberts, K.
    Eger, P.
    Espigat, P.
    Fallon, L.
    Farnier, C.
    Fegan, S.
    Feinstein, F.
    Fernandes, M. V.
    Fiasson, A.
    Fontaine, G.
    Foerster, A.
    Fuessling, M.
    Gabici, S.
    Gallant, Y. A.
    Gast, H.
    Gerard, L.
    Gerbig, D.
    Giebels, B.
    Glicenstein, J. F.
    Glueck, B.
    Goret, P.
    Goering, D.
    Hague, J. D.
    Hampf, D.
    Hauser, M.
    Heinz, S.
    Heinzelmann, G.
    Henri, G.
    Hermann, G.
    Hinton, J. A.
    Hoffmann, A.
    Hofmann, W.
    Hofverberg, P.
    Horns, D.
    Jacholkowska, A.
    de Jager, O. C.
    Jahn, C.
    Jamrozy, M.
    Jung, I.
    Kastendieck, M. A.
    Katarzynski, K.
    Katz, U.
    Kaufmann, S.
    Keogh, D.
    Kerschhaggl, M.
    Khangulyan, D.
    Khelifi, B.
    Klochkov, D.
    Kluzniak, W.
    Kneiske, T.
    Komin, Nu.
    Kosack, K.
    Kossakowski, R.
    Laffon, H.
    Lamanna, G.
    Lenain, J. -P
    Lennarz, D.
    Lohse, T.
    Lopatin, A.
    Lu, C. -C
    Marandon, V.
    Marcowith, A.
    Masbou, J.
    Maurin, D.
    Maxted, N.
    McComb, T. J. L.
    Medina, M. C.
    Mehault, J.
    Moderski, R.
    Moulin, E.
    Naumann, C. L.
    Naumann-Godo, M.
    de Naurois, M.
    Nedbal, D.
    Nekrassov, D.
    Nguyen, N.
    Nicholas, B.
    Niemiec, J.
    Nolan, S. J.
    Ohm, S.
    Olive, J-F
    Wilhelmi, E. de Ona
    Opitz, B.
    Ostrowski, M.
    Panter, M.
    Arribas, M. Paz
    Pedaletti, G.
    Pelletier, G.
    Petrucci, P. -O
    Pita, S.
    Puehlhofer, G.
    Punch, Michael
    Univ Paris Diderot, APC, AstroParticule & Cosmology, CNRS,IN2P3,CEA,Irfu, Observ Paris,Sorbonne Paris C, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France.
    Quirrenbach, A.
    Raue, M.
    Rayner, S. M.
    Reimer, A.
    Reimer, O.
    Renaud, M.
    de los Reyes, R.
    Rieger, F.
    Ripken, J.
    Rob, L.
    Rosier-Lees, S.
    Rowell, G.
    Rudak, B.
    Rulten, C. B.
    Ruppel, J.
    Ryde, F.
    Sahakian, V.
    Santangelo, A.
    Schlickeiser, R.
    Schoeck, F. M.
    Schoenwald, A.
    Schwanke, U.
    Schwarzburg, S.
    Schwemmer, S.
    Shalchi, A.
    Sikora, M.
    Skilton, J. L.
    Sol, H.
    Spengler, G.
    Stawarz, L.
    Steenkamp, R.
    Stegmann, C.
    Stinzing, F.
    Sushch, I.
    Szostek, A.
    Tam, P. H.
    Tavernet, J. -P
    Terrier, R.
    Tibolla, O.
    Tluczykont, M.
    Valerius, K.
    van Eldik, C.
    Vasileiadis, G.
    Venter, C.
    Vialle, J. P.
    Viana, A.
    Vincent, P.
    Vivier, M.
    Voelk, H. J.
    Volpe, F.
    Vorobiov, S.
    Vorster, M.
    Wagner, S. J.
    Ward, M.
    Wierzcholska, A.
    Zajczyk, A.
    Zdziarski, A. A.
    Zech, A.
    Zechlin, H. -S
    Search for Lorentz Invariance breaking with a likelihood fit of the PKS 2155-304 flare data taken on MJD 539442011Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 34, nr 9, s. 738-747Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Several models of Quantum Gravity predict Lorentz Symmetry breaking at energy scales approaching the Planck scale (similar to 10(19) GeV). With present photon data from the observations of distant astrophysical sources, it is possible to constrain the Lorentz Symmetry breaking linear term in the standard photon dispersion relations. Gamma Ray Bursts (GRB) and flaring Active Galactic Nuclei (AGN) are complementary to each other for this purpose, since they are observed at different distances in different energy ranges and with different levels of variability. Following a previous publication of the High Energy Stereoscopic System (H.E.S.S.) collaboration [1], a more sensitive event-by-event method consisting of a likelihood fit is applied to PKS 2155-304 flare data of MJD 53944 (July 28, 2006) as used in the previous publication. The previous limit on the linear term is improved by a factor of similar to 3 up to M(QG)(1), > 2.1 X 10(1B) GeV and is currently the best result obtained with blazars. The sensitivity to the quadratic term is lower and provides a limit of M(QG)(q) > 6.4 x 10(10) GeV, which is the best value obtained so far with an AGN and similar to the best limits obtained with GRB. (C) 2011 Elsevier B.V. All rights reserved.

  • 4. Abramowski, A.
    et al.
    Acero, F.
    Aharonian, F.
    Akhperjanian, A. G.
    Anton, G.
    Barnacka, A.
    de Almeida, U. Barres
    Bazer-Bachi, A. R.
    Becherini, Yvonne
    Becker, J.
    Behera, B.
    Bernloehr, K.
    Bochow, A.
    Boisson, C.
    Bolmontr, J.
    Bordas, P.
    Borrel, V.
    Brucker, J.
    Brun, F.
    Brun, P.
    Bulik, T.
    Buesching, I.
    Carrigan, S.
    Casanova, S.
    Cerruti, M.
    Chadwick, P. M.
    Charbonnier, A.
    Chaves, R. C. G.
    Cheesebrough, A.
    Chounet, L. -M
    Clapson, A. C.
    Coignet, G.
    Conrad, J.
    Dalton, M.
    Daniel, M. K.
    Davids, I. D.
    Degrange, B.
    Deil, C.
    Dickinson, H. J.
    Djannati-Atai, A.
    Domainko, W.
    Drury, L. O. C.
    Dubois, F.
    Dubus, G.
    Dyks, J.
    Dyrda, M.
    Egberts, K.
    Eger, P.
    Espigat, P.
    Fallon, L.
    Farnier, C.
    Fegan, S.
    Feinstein, F.
    Fernandes, M. V.
    Fiasson, A.
    Fontaine, G.
    Foerster, A.
    Fuessling, M.
    Gallant, Y. A.
    Gast, H.
    Gerard, L.
    Gerbig, D.
    Giebels, B.
    Glicenstein, J. F.
    Glueck, B.
    Goret, P.
    Goering, D.
    Hague, J. D.
    Hampf, D.
    Hauser, M.
    Heinz, S.
    Heinzelmann, G.
    Henri, G.
    Hermann, G.
    Hinton, J. A.
    Hoffmann, A.
    Hofmann, W.
    Hofverberg, P.
    Horns, D.
    Jacholkowska, A.
    de Jager, O. C.
    Jahn, C.
    Jamrozy, M.
    Jung, I.
    Kastendieck, M. A.
    Katarzynski, K.
    Katz, U.
    Kaufmann, S.
    Keogh, D.
    Kerschhaggl, M.
    Khangulyan, D.
    Khelifi, B.
    Klochkov, D.
    Kluzniak, W.
    Kneiske, T.
    Komin, Nu
    Kosack, K.
    Kossakowski, R.
    Laffon, H.
    Lamanna, G.
    Lennarz, D.
    Lohse, T.
    Lopatin, A.
    Lu, C. -C
    Marandon, V.
    Marcowith, A.
    Masbou, J.
    Maurin, D.
    Maxted, N.
    McComb, T. J. L.
    Medina, M. C.
    Mehault, J.
    Moderski, R.
    Moulin, E.
    Naumann, C. L.
    Naumann-Godo, M.
    de Naurois, M.
    Nedbal, D.
    Nekrassov, D.
    Nguyen, N.
    Nicholas, B.
    Niemiec, J.
    Nolan, S. J.
    Ohm, S.
    Olive, J. -F
    Wilhelmi, E. de Ona
    Opitz, B.
    Ostrowski, M.
    Panter, M.
    Arribas, M. Paz
    Pedaletti, G.
    Pelletier, G.
    Petrucci, P. -O
    Pita, S.
    Puehlhofer, G.
    Punch, Michael
    Univ Paris Diderot, APC, AstroParticule & Cosmology, CNRS,IN2P3,CEA,Irfu, Observ Paris,Sorbonne Paris C, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France.
    Quirrenbach, A.
    Raue, M.
    Rayner, S. M.
    Reimer, A.
    Reimer, O.
    Renaud, M.
    de los Reyes, R.
    Rieger, F.
    Ripken, J.
    Rob, L.
    Rosier-Lees, S.
    Rowell, G.
    Rudak, B.
    Rulten, C. B.
    Ruppel, J.
    Ryde, F.
    Sahakian, V.
    Santangelo, A.
    Schlickeiser, R.
    Schoeck, F. M.
    Schoenwald, A.
    Schwanke, U.
    Schwarzburg, S.
    Schwemmer, S.
    Shalchi, A.
    Sikora, M.
    Skilton, J. L.
    Sol, H.
    Spengler, G.
    Stawarz, L.
    Steenkamp, R.
    Stegmann, C.
    Stinzing, F.
    Sushch, I.
    Szostek, A.
    Tavernet, J. -P
    Terrier, R.
    Tibolla, O.
    Tluczykont, M.
    Valerius, K.
    van Eldik, C.
    Vasileiadis, G.
    Venter, C.
    Vialle, J. P.
    Viana, A.
    Vincent, P.
    Vivier, M.
    Voelk, H. J.
    Volpe, F.
    Vorobiov, S.
    Vorster, M.
    Wagner, S. J.
    Ward, M.
    Wierzcholska, A.
    Zajczyk, A.
    Zdziarski, A. A.
    Zech, A.
    Zechlin, H. -S
    HESS constraints on dark matter annihilations towards the sculptor and carina dwarf galaxies2011Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 34, nr 8, s. 608-616Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Sculptor and Carina dwarf spheroidal galaxies were observed with the H.E.S.S. Cherenkov telescope array between January 2008 and December 2009. The data sets consist of a total of 11.8 h and 14.811 of high quality data, respectively. No gamma-ray signal was detected at the nominal positions of these galaxies above 220 GeV and 320 GeV, respectively. Upper limits on the gamma-ray fluxes at 95% CL assuming two forms for the spectral energy distribution (a power law shape and one derived from dark matter annihilation) are obtained at the level of 10(-13)-10(-12) cm(-2) s(-1) in the TeV range. Constraints on the velocity weighted dark matter particle annihilation cross section for both Sculptor and Carina dwarf galaxies range from <sigma v > 10(-21) cm(3) s(-1) down to <sigma v > similar to 10(-2)2 cm(3) s(-1) on the dark matter halo model used. Possible enhancements of the gamma-ray flux are studied: the Sommerfeld effect, which is found to exclude some dark matter particle masses, the internal Bremsstrahlung and clumps in the dark-matter halo distributions. (C) 2010 Elsevier B.V. All rights reserved.

  • 5. Acharya, B. S.
    et al.
    Actis, M.
    Aghajani, T.
    Agnetta, G.
    Aguilar, J.
    Aharonian, F.
    Ajello, M.
    Akhperjanian, A.
    Alcubierre, M.
    Aleksic, J.
    Alfaro, R.
    Aliu, E.
    Allafort, A. J.
    Allan, D.
    Allekotte, I.
    Amato, E.
    Anderson, J.
    Anguener, E. O.
    Antonelli, L. A.
    Antoranz, P.
    Aravantinos, A.
    Arlen, T.
    Armstrong, T.
    Arnaldi, H.
    Arrabito, L.
    Asano, K.
    Ashton, T.
    Asorey, H. G.
    Awane, Y.
    Baba, H.
    Babic, A.
    Baby, N.
    Baehr, J.
    Bais, A.
    Baixeras, C.
    Bajtlik, S.
    Balbo, M.
    Balis, D.
    Balkowski, C.
    Bamba, A.
    Bandiera, R.
    Barber, A.
    Barbier, C.
    Barcelo, M.
    Barnacka, A.
    Barnstedt, J.
    Barres de Almeida, U.
    Barrio, J. A.
    Basili, A.
    Basso, S.
    Bastieri, D.
    Bauer, C.
    Baushev, A.
    Becerra, J.
    Becherini, Yvonne
    Bechtol, K. C.
    Tjus, J. Becker
    Beckmann, V.
    Bednarek, W.
    Behera, B.
    Belluso, M.
    Benbow, W.
    Berdugo, J.
    Berger, K.
    Bernard, F.
    Bernardino, T.
    Bernloehr, K.
    Bhat, N.
    Bhattacharyya, S.
    Bigongiari, C.
    Biland, A.
    Billotta, S.
    Bird, T.
    Birsin, E.
    Bissaldi, E.
    Biteau, J.
    Bitossi, M.
    Blake, S.
    Blanch Bigas, O.
    Blasi, P.
    Bobkov, A.
    Boccone, V.
    Boettcher, M.
    Bogacz, L.
    Bogart, J.
    Bogdan, M.
    Boisson, C.
    Boix Gargallo, J.
    Bolmont, J.
    Bonanno, G.
    Bonardi, A.
    Bonev, T.
    Bonifacio, P.
    Bonnoli, G.
    Bordas, P.
    Borgland, A.
    Borkowski, J.
    Bose, R.
    Botner, O.
    Bottani, A.
    Bouchet, L.
    Bourgeat, M.
    Boutonnet, C.
    Bouvier, A.
    Brau-Nogue, S.
    Braun, I.
    Bretz, T.
    Briggs, M.
    Bringmann, T.
    Brook, P.
    Brun, P.
    Brunetti, L.
    Buanes, T.
    Buckley, J.
    Buehler, R.
    Bugaev, V.
    Bulgarelli, A.
    Bulik, T.
    Busetto, G.
    Buson, S.
    Byrum, K.
    Cailles, M.
    Cameron, R.
    Camprecios, J.
    Canestrari, R.
    Cantu, S.
    Capalbi, M.
    Caraveo, P.
    Carmona, E.
    Carosi, A.
    Carr, J.
    Carton, P. -H
    Casanova, S.
    Casiraghi, M.
    Catalano, O.
    Cavazzani, S.
    Cazaux, S.
    Cerruti, M.
    Chabanne, E.
    Chadwick, P.
    Champion, C.
    Chen, A.
    Chiang, J.
    Chiappetti, L.
    Chikawa, M.
    Chitnis, V. R.
    Chollet, F.
    Chudoba, J.
    Cieslar, M.
    Cillis, A.
    Cohen-Tanugi, J.
    Colafrancesco, S.
    Colin, P.
    Calome, J.
    Colonges, S.
    Compin, M.
    Conconi, P.
    Conforti, V.
    Connaughton, V.
    Conrad, J.
    Contreras, J. L.
    Coppi, P.
    Corona, P.
    Corti, D.
    Cortina, J.
    Cossio, L.
    Costantini, H.
    Cotter, G.
    Courty, B.
    Couturier, S.
    Covino, S.
    Crimi, G.
    Criswell, S. J.
    Croston, J.
    Cusumano, G.
    Dafonseca, M.
    Dale, O.
    Daniel, M.
    Darling, J.
    Davids, I.
    Dazzi, F.
    De Angelis, A.
    De Caprio, V.
    De Frondat, F.
    de Gouveia Dal Pino, E. M.
    de la Calle, I.
    De La Vega, G. A.
    Lopez, R. de los Reyes
    De Lotto, B.
    De Luca, A.
    de Mello Neto, J. R. T.
    de Naurois, M.
    de Oliveira, Y.
    de Ona Wilhelmi, E.
    de Souza, V.
    Decerprit, G.
    Decock, G.
    Deil, C.
    Delagnes, E.
    Deleglise, G.
    Delgado, C.
    Della Volpe, D.
    Demange, P.
    Depaola, G.
    Dettlaff, A.
    Di Paola, A.
    Di Pierro, F.
    Diaz, C.
    Dick, J.
    Dickherber, R.
    Dickinson, H.
    Diez-Blanco, V.
    Digel, S.
    Dimitrov, D.
    Disset, G.
    Djannati-Atai, A.
    Doert, M.
    Dohmke, M.
    Domainko, W.
    Prester, D. Dominis
    Donat, A.
    Dorner, D.
    Doro, M.
    Dournaux, J-L
    Drake, G.
    Dravins, D.
    Drury, L.
    Dubois, F.
    Dubois, R.
    Dubus, G.
    Dufour, C.
    Dumas, D.
    Dumm, J.
    Durand, D.
    Dyks, J.
    Dyrda, M.
    Ebr, J.
    Edy, E.
    Egberts, K.
    Eger, P.
    Einecke, S.
    Eleftheriadis, C.
    Elles, S.
    Emmanoulopoulos, D.
    Engelhaupt, D.
    Enomoto, R.
    Ernenwein, J-P
    Errando, M.
    Etchegoyen, A.
    Evans, P.
    Falcone, A.
    Fantinel, D.
    Farakos, K.
    Farnier, C.
    Fasola, G.
    Favill, B.
    Fede, E.
    Federici, S.
    Fegan, S.
    Feinstein, F.
    Ferenc, D.
    Ferrando, P.
    Fesquet, M.
    Fiasson, A.
    Fillin-Martino, E.
    Fink, D.
    Finley, C.
    Finley, J. P.
    Fiorini, M.
    Firpo Curcoll, R.
    Flores, H.
    Florin, D.
    Focke, W.
    Foehr, C.
    Fokitis, E.
    Font, L.
    Fontaine, G.
    Fornasa, M.
    Foerster, A.
    Fortson, L.
    Fouque, N.
    Franckowiak, A.
    Fransson, C.
    Fraser, G.
    Frei, R.
    Albuquerque, I. F. M.
    Fresnillo, L.
    Fruck, C.
    Fujita, Y.
    Fukazawa, Y.
    Fukui, Y.
    Funk, S.
    Gaebele, W.
    Gabici, S.
    Gabriele, R.
    Gadola, A.
    Galante, N.
    Gall, D.
    Gallant, Y.
    Gamez-Garcia, J.
    Garcia, B.
    Garcia Lopez, R.
    Gardiol, D.
    Garrido, D.
    Garrido, L.
    Gascon, D.
    Gaug, M.
    Gaweda, J.
    Gebremedhin, L.
    Geffroy, N.
    Gerard, L.
    Ghedina, A.
    Ghigo, M.
    Giannakaki, E.
    Gianotti, F.
    Giarrusso, S.
    Giavitto, G.
    Giebels, B.
    Gika, V.
    Giommi, P.
    Girard, N.
    Giro, E.
    Giuliani, A.
    Glanzman, T.
    Glicenstein, J. -F
    Godinovic, N.
    Golev, V.
    Gomez Berisso, M.
    Gomez-Ortega, J.
    Gonzalez, M. M.
    Gonzalez, A.
    Gonzalez, F.
    Gonzalez Munoz, A.
    Gothe, K. S.
    Gougerot, M.
    Graciani, R.
    Grandi, P.
    Granena, F.
    Granot, J.
    Grasseau, G.
    Gredig, R.
    Green, A.
    Greenshaw, T.
    Gregoire, T.
    Grimm, O.
    Grube, J.
    Grudzinska, M.
    Gruev, V.
    Gruenewald, S.
    Grygorczuk, J.
    Guarino, V.
    Gunji, S.
    Gyuk, G.
    Hadasch, D.
    Hagiwara, R.
    Hahn, J.
    Hakansson, N.
    Hallgren, A.
    Hamer Heras, N.
    Hara, S.
    Hardcastle, M. J.
    Harris, J.
    Hassan, T.
    Hatanaka, K.
    Haubold, T.
    Haupt, A.
    Hayakawa, T.
    Hayashida, M.
    Heller, R.
    Henault, F.
    Henri, G.
    Hermann, G.
    Hermel, R.
    Herrero, A.
    Hidaka, N.
    Hinton, J.
    Hoffmann, D.
    Hofmann, W.
    Hofverberg, P.
    Holder, J.
    Horns, D.
    Horville, D.
    Houles, J.
    Hrabovsky, M.
    Hrupec, D.
    Huan, H.
    Huber, B.
    Huet, J. -M
    Hughes, G.
    Humensky, T. B.
    Huovelin, J.
    Ibarra, A.
    Illa, J. M.
    Impiombato, D.
    Incorvaia, S.
    Inoue, S.
    Inoue, Y.
    Ioka, K.
    Ismailova, E.
    Jablonski, C.
    Jacholkowska, A.
    Jamrozy, M.
    Janiak, M.
    Jean, P.
    Jeanney, C.
    Jimenez, J. J.
    Jogler, T.
    Johnson, T.
    Journet, L.
    Juffroy, C.
    Jung, I.
    Kaaret, P.
    Kabuki, S.
    Kagaya, M.
    Kakuwa, J.
    Kalkuhl, C.
    Kankanyan, R.
    Karastergiou, A.
    Kaercher, K.
    Karczewski, M.
    Karkar, S.
    Kasperek, Aci.
    Kastana, D.
    Katagiri, H.
    Kataoka, J.
    Katarzynski, K.
    Katz, U.
    Kawanaka, N.
    Kellner-Leidel, B.
    Kelly, H.
    Kendziorra, E.
    Khelifi, B.
    Kieda, D. B.
    Kifune, T.
    Kihm, T.
    Kishimoto, T.
    Kitamoto, K.
    Kluzniak, W.
    Knapic, C.
    Knapp, J. w
    Knoedlseder, J.
    Koeck, F.
    Kocot, J.
    Kodani, K.
    Koehne, J. -H
    Kohri, K.
    Kokkotas, K.
    Kolitzus, D.
    Komin, N.
    Kominis, I.
    Konno, Y.
    Koeppel, H.
    Korohoda, P.
    Kosack, K.
    Koss, G.
    Kossakowski, R.
    Kostka, P.
    Koul, R.
    Kowal, G.
    Koyama, S.
    Koziol, J.
    Kraehenbuehl, T.
    Krause, J.
    Krawzcynski, H.
    Krennrich, F.
    Krepps, A.
    Kretzschmann, A.
    Krobot, R.
    Krueger, P.
    Kubo, H.
    Kudryavtsev, V. A.
    Kushida, J.
    Kuznetsov, A.
    La Barbera, A.
    La Palombara, N.
    La Parola, V.
    La Rosa, G.
    Lacombe, K.
    Lamanna, G.
    Lande, J.
    Languignon, D.
    Lapington, J.
    Laporte, P.
    Lavalley, C.
    Le Flour, T.
    Le Padellec, A.
    Lee, S. -H
    Lee, W. H.
    Leigui de Oliveira, M. A.
    Lelas, D.
    Lenain, J. -P
    Leopold, D. J.
    Lerch, T.
    Lessio, L.
    Lieunard, B.
    Lindfors, E.
    Liolios, A.
    Lipniacka, A.
    Lockart, H.
    Lohse, T.
    Lombardi, S.
    Lopatin, A.
    Lopez, M.
    Lopez-Coto, R.
    Lopez-Oramas, A.
    Lorca, A.
    Lorenz, E.
    Lubinski, P.
    Lucarelli, F.
    Luedecke, H.
    Ludwin, J.
    Luque-Escamilla, P. L.
    Lustermann, W.
    Luz, O.
    Lyard, E.
    Maccarone, M. C.
    Maccarone, T. J.
    Madejski, G. M.
    Madhavan, A.
    Mahabir, M.
    Maier, G.
    Majumdar, P.
    Malaguti, G.
    Maltezos, S.
    Manalaysay, A.
    Mancilla, A.
    Mandat, D.
    Maneva, G.
    Mangano, A.
    Manigot, P.
    Mannheim, K.
    Manthos, I.
    Maragos, N.
    Marcowith, A.
    Mariotti, M.
    Marisaldi, M.
    Markoff, S.
    Marszalek, A.
    Martens, C.
    Marti, J.
    Martin, J-M
    Martin, P.
    Martinez, G.
    Martinez, F.
    Martinez, M.
    Masserot, A.
    Mastichiadis, A.
    Mathieu, A.
    Matsumoto, H.
    Mattana, F.
    Mattiazzo, S.
    Maurin, G.
    Maxfield, S.
    Maya, J.
    Mazin, D.
    Mc Comb, L.
    McCubbin, N.
    McHardy, I.
    McKay, R.
    Medina, C.
    Melioli, C.
    Melkumyan, D.
    Mereghetti, S.
    Mertsch, P.
    Meucci, M.
    Michalowski, J.
    Micolon, P.
    Mihailidis, A.
    Mineo, T.
    Minuti, M.
    Mirabal, N.
    Mirabel, F.
    Miranda, J. M.
    Mirzoyan, R.
    Mizuno, T.
    Moal, B.
    Moderski, R.
    Mognet, I.
    Molinari, E.
    Molinaro, M.
    Montaruli, T.
    Monteiro, I.
    Moore, P.
    Moralejo Olaizola, A.
    Mordalska, M.
    Morello, C.
    Mori, K.
    Mottez, F.
    Moudden, Y.
    Moulin, E.
    Mrusek, I.
    Mukherjee, R.
    Munar-Adrover, P.
    Muraishi, H.
    Murase, K.
    Murphy, A.
    Nagataki, S.
    Naito, T.
    Nakajima, D.
    Nakamori, T.
    Nakayama, K.
    Naumann, C.
    Naumann, D.
    Naumann-Godo, M.
    Nayman, P.
    Nedbal, D.
    Neise, D.
    Nellen, L.
    Neustroev, V.
    Neyroud, N.
    Nicastro, L.
    Nicolau-Kuklinski, J.
    Niedzwiecki, A.
    Niemiec, J.
    Nieto, D.
    Nikolaidis, A.
    Nishijima, K.
    Nolan, S.
    Northrop, R.
    Nosek, D.
    Nowak, N.
    Nozato, A.
    O'Brien, P.
    Ohira, Y.
    Ohishi, M.
    Ohm, S.
    Ohoka, H.
    Okuda, T.
    Okumura, A.
    Olive, J. -F
    Ong, R. A.
    Orito, R.
    Orr, M.
    Osborne, J.
    Ostrowski, M.
    Otero, L. A.
    Otte, N.
    Ovcharov, E.
    Oya, I.
    Ozieblo, A.
    Padilla, L.
    Paiano, S.
    Paillot, D.
    Paizis, A.
    Palanque, S.
    Palatka, M.
    Pallota, J.
    Panagiotidis, K.
    Panazol, J. -L
    Paneque, D.
    Panter, M.
    Paoletti, R.
    Papayannis, A.
    Papyan, G.
    Paredes, J. M.
    Pareschi, G.
    Parks, G.
    Parraud, J. -M
    Parsons, D.
    Arribas, M. Paz
    Pech, M.
    Pedaletti, G.
    Pelassa, V.
    Pelat, D.
    Perez, M. D. C.
    Persic, M.
    Petrucci, P-O
    Peyaud, B.
    Pichel, A.
    Pita, S.
    Pizzolato, F.
    Platos, L.
    Platzer, R.
    Pogosyan, L.
    Pohl, M.
    Pojmanski, G.
    Ponz, J. D.
    Potter, W.
    Poutanen, J.
    Prandini, E.
    Prast, J.
    Preece, R.
    Profeti, F.
    Prokoph, Heike
    Prouza, M.
    Proyetti, M.
    Puerto-Gimenez, I.
    Puehlhofer, G.
    Puljak, I.
    Punch, Michael
    Univ Paris Diderot, APC, AstroParticule & Cosmology, CNRS,IN2P3,CEA,Irfu, Observ Paris,Sorbonne Paris C, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France.
    Pyziol, R.
    Quel, E. J.
    Quinn, J.
    Quirrenbach, A.
    Racero, E.
    Rajda, P. J.
    Ramon, P.
    Rando, R.
    Rannot, R. C.
    Rataj, M.
    Raue, M.
    Reardon, P.
    Reimann, O.
    Reimer, A.
    Reimer, O.
    Reitberger, K.
    Renaud, M.
    Renner, S.
    Reville, B.
    Rhode, W.
    Ribo, M.
    Ribordy, M.
    Richer, M. G.
    Rico, J.
    Ridky, J.
    Rieger, F.
    Ringegni, P.
    Ripken, J.
    Ristori, P. R.
    Riviere, A.
    Rivoire, S.
    Rob, L.
    Roeser, U.
    Rohlfs, R.
    Rojas, G.
    Romano, P.
    Romaszkan, W.
    Romero, G. E.
    Rosen, S.
    Lees, S. Rosier
    Ross, D.
    Rouaix, G.
    Rousselle, J.
    Rousselle, S.
    Rovero, A. C.
    Roy, F.
    Royer, S.
    Rudak, B.
    Rulten, C.
    Rupinski, M.
    Russo, F.
    Ryde, F.
    Sacco, B.
    Saemann, E. O.
    Saggion, A.
    Safiakian, V.
    Saito, K.
    Saito, T.
    Saito, Y.
    Sakaki, N.
    Sakonaka, R.
    Salini, A.
    Sanchez, F.
    Sanchez-Conde, M.
    Sandoval, A.
    Sandaker, H.
    Sant'Ambrogio, E.
    Santangelo, A.
    Santos, E. M.
    Sanuy, A.
    Sapozhnikov, L.
    Sarkar, S.
    Sartore, N.
    Sasaki, H.
    Satalecka, K.
    Sawada, M.
    Scalzotto, V.
    Scapin, V.
    Scarcioffolo, M.
    Schafer, J.
    Schanz, T.
    Schlenstedt, S.
    Schlickeiser, R.
    Schmidt, T.
    Schmoll, J.
    Schovanek, P.
    Schroedter, M.
    Schultz, C.
    Schultze, J.
    Schulz, A.
    Schure, K.
    Schwab, T.
    Schwanke, U.
    Schwarz, J.
    Schwarzburg, S.
    Schweizer, T.
    Schwemmer, S.
    Segreto, A.
    Seiradakis, J. -H
    Sembroski, G. H.
    Seweryn, K.
    Sharma, M.
    Shayduk, M.
    Shellard, R. C.
    Shi, J.
    Shibata, T.
    Shibuya, A.
    Shum, E.
    Sidoli, L.
    Sidz, M.
    Sieiro, J.
    Sikora, M.
    Silk, J.
    Sillanpaa, A.
    Singh, B. B.
    Sitarek, J.
    Skole, C.
    Smareglia, R.
    Smith, A.
    Smith, D.
    Smith, J.
    Smith, N.
    Sobczynska, D.
    Sol, H.
    Sottile, G.
    Sowinski, M.
    Spanier, F.
    Spiga, D.
    Spyrou, S.
    Stamatescu, V.
    Stamerra, A.
    Starling, R.
    Stawarz, L.
    Steenkamp, R.
    Stegmann, C.
    Steiner, S.
    Stergioulas, N.
    Sternberger, R.
    Sterzel, M.
    Stinzing, F.
    Stodulski, M.
    Straumann, U.
    Strazzeri, E.
    Stringhetti, L.
    Suarez, A.
    Suchenek, M.
    Sugawara, R.
    Sulanke, K. -H
    Sun, S.
    Supanitsky, A. D.
    Suric, T.
    Sutcliffe, P.
    Sykes, J.
    Szanecki, M.
    Szepieniec, T.
    Szostek, A.
    Tagliaferri, G.
    Tajima, H.
    Takahashi, H.
    Takahashi, K.
    Takalo, L.
    Takami, H.
    Talbot, C.
    Tammi, J.
    Tanaka, M.
    Tanaka, S.
    Tasan, J.
    Tavani, M.
    Tavernet, J. -P
    Tejedor, L. A.
    Telezhinsky, I.
    Temnikov, P.
    Tenzer, C.
    Terada, Y.
    Terrier, R.
    Teshima, M.
    Testa, V.
    Tezier, D.
    Thuermann, D.
    Tibaldo, L.
    Tibolla, O.
    Tiengo, A.
    Tluczykont, M.
    Todero Peixoto, C. J.
    Tokanai, F.
    Tokarz, M.
    Toma, K.
    Torii, K.
    Tornikoski, M.
    Torres, D. F.
    Torres, M.
    Tosti, G.
    Totani, T.
    Toussenel, C.
    Tovmassian, G.
    Travnicek, P.
    Trifoglio, M.
    Troyano, I.
    Tsinganos, K.
    Ueno, H.
    Umehara, K.
    Upadhya, S. S.
    Usher, T.
    Uslenghi, M.
    Valdes-Galicia, J. F.
    Vallania, P.
    Vallejo, G.
    van Driel, W.
    van Eldik, C.
    Vandenbrouke, J.
    Vanderwalt, J.
    Vankov, H.
    Vasileiadis, G.
    Vassiliev, V.
    Veberic, D.
    Vegas, I.
    Vercellone, S.
    Vergani, S.
    Veyssiere, C.
    Vialle, J. P.
    Viana, A.
    Videla, M.
    Vincent, P.
    Vincent, S.
    Vink, J.
    Vlahakis, N.
    Vlahos, L.
    Vogler, P.
    Vollhardt, A.
    von Gunten, H. -P
    Vorobiov, S.
    Vuerli, C.
    Waegebaert, V.
    Wagner, R.
    Wagner, R. G.
    Wagner, S.
    Wakely, S. P.
    Walter, R.
    Walther, T.
    Warda, K.
    Warwick, R.
    Wawer, P.
    Wawrzaszek, R.
    Webb, N.
    Wegner, P.
    Weinstein, A.
    Weitzel, Q.
    Welsing, R.
    Werner, M.
    Wetteskind, H.
    White, R.
    Wierzcholska, A.
    Wiesand, S.
    Wilkinson, M.
    Williams, D. A.
    Willingale, R.
    Winiarski, K.
    Wischnewski, R.
    Wisniewski, L.
    Wood, M.
    Woernlein, A.
    Xiong, Q.
    Yadav, K. K.
    Yamamoto, H.
    Yamamoto, T.
    Yamazaki, R.
    Yanagita, S.
    Yebras, J. M.
    Yelos, D.
    Yoshida, A.
    Yoshida, T.
    Yoshikoshi, T.
    Zabalza, V.
    Zacharias, M.
    Zajczyk, A.
    Zanin, R.
    Zdziarski, A.
    Zech, A.
    Zhao, A.
    Zhou, X.
    Zietara, K.
    Ziolkowski, J.
    Ziolkowski, P.
    Zitelli, V.
    Zurbach, C.
    Zychowski, P.
    Introducing the CTA concept2013Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 43, s. 3-18Artikkel i tidsskrift (Annet vitenskapelig)
    Abstract [en]

    The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. (C) 2013 Elsevier B.V. All rights reserved.

  • 6.
    Acharyya, A.
    et al.
    Univ Durham, UK.
    Agudo, I
    CSIC, Spain.
    Anguner, E. O.
    Aix Marseille Univ, France.
    Alfaro, R.
    Univ Nacl Autonoma Mexico, Mexico.
    Alfaro, J.
    Pontificia Univ Catolica Chile, Chile.
    Alispach, C.
    Univ Geneva, Switzerland.
    Aloisio, R.
    Univ Aquila, Italy;Gran Sasso Sci Inst, Italy.
    Alves Batista, R.
    Univ Sao Paulo, Brazil.
    Amans, J-P
    PSL Res Univ, France.
    Amati, L.
    INAF, Italy.
    Amato, E.
    INAF, Italy.
    Ambrosi, G.
    Ist Nazl Fis Nucl, Italy.
    Antonelli, L. A.
    INAF, Italy.
    Aramo, C.
    Ist Nazl Fis Nucl, Italy.
    Armstrong, T.
    Univ Oxford, UK.
    Arqueros, F.
    Univ Complutense Madrid, Spain.
    Arrabito, L.
    Univ Montpellier, France.
    Asano, K.
    Univ Tokyo, Japan.
    Ashkar, H.
    Univ Paris Saclay, France.
    Balazs, C.
    Monash Univ, Australia.
    Balbo, M.
    Univ Geneva, Switzerland.
    Balmaverde, B.
    INAF, Italy.
    Barai, P.
    Univ Sao Paulo, Brazil.
    Barbano, A.
    Univ Geneva, Switzerland.
    Barkov, M.
    Inst Phys & Chem Res, RIKEN, Japan.
    Barres de Almeida, U.
    Ctr Brasileiro Pesquisas Fis, Rua Xavier Sigaud 150, BR-22290180 Rio De Janeiro, RJ, Brazil..
    Barrio, J. A.
    Univ Complutense Madrid, EMFTEL Dept, E-28040 Madrid, Spain.;Univ Complutense Madrid, IPARCOS, E-28040 Madrid, Spain..
    Bastieri, D.
    Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy.;Univ Padua, Via Marzolo 8, I-35131 Padua, Italy..
    Becerra Gonzalez, J.
    Univ La Laguna, Inst Astrofis Canarias, Tenerife, Spain.;Univ La Laguna, Dept Astrofis, Tenerife, Spain..
    Tjus, J. Becker
    Ruhr Univ Bochum, Inst Theoret Phys, Lehrstuhl Weltraum & Astrophys 4, Univ Str 150, D-44801 Bochum, Germany..
    Bellizzi, L.
    Ist Nazl Fis Nucl, Via Roma 56, I-53100 Siena, Italy.;Univ Siena, DSFTA, Sez Fis, Via Roma 56, I-53100 Siena, Italy..
    Benbow, W.
    Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02180 USA..
    Bernardini, E.
    Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy.;Univ Padua, Via Marzolo 8, I-35131 Padua, Italy.;DESY, Platanenallee 6, D-15738 Zeuthen, Germany..
    Bernardos, M. , I
    Bernloehr, K.
    Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany..
    Berti, A.
    Ist Nazl Fis Nucl, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy..
    Berton, M.
    INAF, Osservatorio Astron Brera, Via Brera 28, I-20121 Milan, Italy..
    Bertucci, B.
    Ist Nazl Fis Nucl, Sez Perugia, Via A Pascoli, I-06123 Perugia, Italy.;Univ Perugia, Via A Pascoli, I-06123 Perugia, Italy..
    Beshley, V
    NASU, Pidstryhach Inst Appl Problems Mech & Math, 3B Naukova St, UA-79060 Lvov, Ukraine..
    Biasuzzi, B.
    Univ Paris Sud, Univ Paris Saclay, Inst Phys Nucleaire, IN2P3,CNRS, 15 Rue Georges Clemenceau, F-91406 Orsay, France..
    Bigongiari, C.
    INAF, Osservatorio Astronom Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy..
    Bird, R.
    Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA..
    Bissaldi, E.
    Ist Nazl Fis Nucl, Sez Bari, Via Orabona 4, I-70124 Bari, Italy.;Politecn Bari, Via Orabona 4, I-70124 Bari, Italy..
    Biteau, J.
    Univ Paris Sud, Univ Paris Saclay, Inst Phys Nucleaire, IN2P3,CNRS, 15 Rue Georges Clemenceau, F-91406 Orsay, France..
    Blanch, O.
    Barcelona Inst Sci & Technol, Inst Fis Altes Energies, Campus UAB, Bellaterra 08193, Barcelona, Spain..
    Blazek, J.
    Czech Acad Sci, Inst Phys, Na Slovance 1999-2, Prague 18221 8, Czech Republic..
    Boisson, C.
    PSL Res Univ, Observ Paris, CNRS, LUTH & GEPI, 5 Pl Jules Janssen, F-92190 Meudon, France..
    Bonanno, G.
    INAF, Osservatorio Astrofis Catania, Via S Sofia 78, I-95123 Catania, Italy..
    Bonardi, A.
    Radboud Univ Nijmegen, POB 9010, NL-6500 GL Nijmegen, Netherlands..
    Bonavolonta, C.
    Ist Nazl Fis Nucl, Sez Napoli, Via Cintia Ed G, I-80126 Naples, Italy..
    Bonnoli, G.
    Ist Nazl Fis Nucl, Via Roma 56, I-53100 Siena, Italy.;Univ Siena, DSFTA, Sez Fis, Via Roma 56, I-53100 Siena, Italy..
    Bordas, P.
    Univ Barcelona, Inst Ciencies Cosmos, Dept Fis Quant & Astrofis, IEEC UB, Marti & Franques 1, E-08028 Barcelona, Spain..
    Bottcher, M.
    North West Univ, Ctr Space Res, Potchefstroom Campus, ZA-2531 Potchefstroom, South Africa..
    Bregeon, J.
    Univ Montpellier, Lab Univers & Particules Montpellier, IN2P3, CNRS, CC 72,Pl Eugene Bataillon, F-34095 Montpellier 5, France..
    Brill, A.
    Columbia Univ, Dept Phys, 538 West 120th St, New York, NY 10027 USA..
    Brown, A. M.
    Univ Durham, Dept Phys, South Rd, Durham DH1 3LE, England.;Univ Durham, Ctr Adv Instrumentat, South Rd, Durham DH1 3LE, England..
    Bruegge, K.
    TU Dortmund Univ, Dept Phys, Otto Hahn Str 4, D-44221 Dortmund, Germany..
    Brun, P.
    Univ Montpellier, Lab Univers & Particules Montpellier, IN2P3, CNRS, CC 72,Pl Eugene Bataillon, F-34095 Montpellier 5, France..
    Bruno, P.
    INAF, Osservatorio Astrofis Catania, Via S Sofia 78, I-95123 Catania, Italy..
    Bulgarelli, A.
    INAF, Osservatorio Astrofis & Scienza Spazio Bologna, Via Piero Gobetti 101, I-40129 Bologna, Italy..
    Bulik, T.
    Univ Warsaw, Dept Phys, Astron Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland..
    Burton, M.
    Armagh Observ & Planetarium, Coll Hill, Armagh BT61 9DG, North Ireland..
    Burtovoi, A.
    INAF, Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy..
    Busetto, G.
    Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy.;Univ Padua, Via Marzolo 8, I-35131 Padua, Italy..
    Cameron, R.
    Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.;Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, SIAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA..
    Canestrari, R.
    INAF, Osservatorio Astron Brera, Via Brera 28, I-20121 Milan, Italy..
    Capalbi, M.
    INAF, Ist Astrofis Spaziale & Fis Cosm Palermo, Via U Malfa 153, I-90146 Palermo, Italy..
    Caproni, A.
    Univ Cruzeiro Sul, Nucl Astrofis Teor, Rua Galvao Bueno 8687,Bloco B,Sala 16, BR-01506000 Libertade, SP, Brazil..
    Capuzzo-Dolcetta, R.
    INAF, Osservatorio Astronom Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy..
    Caraveo, P.
    INAF, Ist Astrofis Spaziale & Fis Cosm Milano, Via Bassini 15, I-20133 Milan, Italy..
    Caroff, S.
    Univ Paris Diderot, Sorbonne Univ, Lab Phys Nucl & Hautes Energies, Sorbonne Paris Cite,CNRS,IN2P3,LPNHE, 4 Pl Jussieu, F-75005 Paris, France..
    Carosi, R.
    Ist Nazl Fis Nucl, Sez Pisa, I-56217 Pisa, Italy..
    Casanova, S.
    Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany.;Polish Acad Sci, Hernyk Niewodniczanski Inst Nucl Phys, Ul Radzikowskiego 152, PL-31342 Krakow, Poland..
    Cascone, E.
    INAF, Osservatorio Astron Capodimonte, Via Salita Moiariello 16, I-80131 Naples, Italy..
    Cassol, F.
    Aix Marseille Univ, CPPM, IN2P3, CNRS, Marseille, France.;163 Ave Luminy, F-13288 Marseille 09, France..
    Catalani, F.
    Univ Sao Paulo, Area & Estr Municipal Campinho, Escola Engn Lorena, Area 1 Estr Municipal Campinho S-N, BR-12602810 Sao Paulo, Brazil..
    Catalano, O.
    INAF, Ist Astrofis Spaziale & Fis Cosm Palermo, Via U Malfa 153, I-90146 Palermo, Italy..
    Cauz, D.
    Ist Nazl Fis Nucl, Sez Trieste, Via Sci 208, I-33100 Udine, Italy.;Univ Udine, Via Sci 208, I-33100 Udine, Italy..
    Cerruti, M.
    Univ Barcelona, Inst Ciencies Cosmos, Dept Fis Quant & Astrofis, IEEC UB, Marti & Franques 1, E-08028 Barcelona, Spain..
    Chaty, S.
    Univ Paris Saclay, Univ Paris Diderot, Sorbonne Paris Cite, CNRS,AIM,CEA, F-91191 Gif Sur Yvette, France..
    Chen, A.
    Univ Witwatersrand, 1 Jan Smuts Ave, ZA-2000 Johannesburg, South Africa..
    Chernyakova, M.
    Dublin City Univ, Ctr Astrophys & Relat, Sch Phys Sci, Dublin 9, Ireland..
    Chiaro, G.
    INAF, Ist Astrofis Spaziale & Fis Cosm Milano, Via Bassini 15, I-20133 Milan, Italy..
    Cieslar, M.
    Univ Warsaw, Dept Phys, Astron Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland..
    Colak, S. M.
    Barcelona Inst Sci & Technol, Inst Fis Altes Energies, Campus UAB, Bellaterra 08193, Barcelona, Spain..
    Conforti, V
    INAF, Osservatorio Astrofis & Scienza Spazio Bologna, Via Piero Gobetti 101, I-40129 Bologna, Italy..
    Congiu, E.
    INAF, Osservatorio Astron Brera, Via Brera 28, I-20121 Milan, Italy..
    Contreras, J. L.
    Univ Complutense Madrid, EMFTEL Dept, E-28040 Madrid, Spain.;Univ Complutense Madrid, IPARCOS, E-28040 Madrid, Spain..
    Cortina, J.
    CIEMAT, Avda Complutense 40, E-28040 Madrid, Spain..
    Costa, A.
    INAF, Osservatorio Astrofis Catania, Via S Sofia 78, I-95123 Catania, Italy..
    Costantini, H.
    Aix Marseille Univ, CPPM, IN2P3, CNRS, Marseille, France.;163 Ave Luminy, F-13288 Marseille 09, France..
    Cotter, G.
    Univ Oxford, Dept Phys, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England..
    Cristofari, P.
    Columbia Univ, Dept Phys, 538 West 120th St, New York, NY 10027 USA..
    Cumani, P.
    Barcelona Inst Sci & Technol, Inst Fis Altes Energies, Campus UAB, Bellaterra 08193, Barcelona, Spain..
    Cusumano, G.
    INAF, Ist Astrofis Spaziale & Fis Cosm Palermo, Via U Malfa 153, I-90146 Palermo, Italy..
    D'Ai, A.
    INAF, Ist Astrofis Spaziale & Fis Cosm Palermo, Via U Malfa 153, I-90146 Palermo, Italy..
    D'Ammando, F.
    INAF, Ist Radioastron, Via Gobetti 101, I-40129 Bologna, Italy..
    Dangeon, L.
    PSL Res Univ, Observ Paris, CNRS, LUTH & GEPI, 5 Pl Jules Janssen, F-92190 Meudon, France..
    Da Vela, P.
    Ist Nazl Fis Nucl, Sez Pisa, I-56217 Pisa, Italy..
    Dazzi, F.
    Cherenkov Telescope Array Observ, Saupfercheckweg 1, D-69117 Heidelberg, Germany..
    De Angelis, A.
    Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy.;Univ Padua, Via Marzolo 8, I-35131 Padua, Italy..
    De Caprio, V
    INAF, Osservatorio Astron Capodimonte, Via Salita Moiariello 16, I-80131 Naples, Italy..
    de Cassia dos Anjos, R.
    Univ Fed Parana Setor Palotina, Dept Engenharias & Exatas, Rua Pioneiro 2153, BR-85950000 Jardim Dallas, Parana, Brazil..
    De Frondat, F.
    PSL Res Univ, Observ Paris, CNRS, LUTH & GEPI, 5 Pl Jules Janssen, F-92190 Meudon, France..
    de Gouveia Dal Pino, E. M.
    Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, Cidade Univ,R Matao 1226, BR-05508090 Sao Paulo, SP, Brazil..
    De Lotto, B.
    Ist Nazl Fis Nucl, Sez Trieste, Via Sci 208, I-33100 Udine, Italy.;Univ Udine, Via Sci 208, I-33100 Udine, Italy..
    De Martino, D.
    Univ Cruzeiro Sul, Nucl Astrofis Teor, Rua Galvao Bueno 8687,Bloco B,Sala 16, BR-01506000 Libertade, SP, Brazil..
    de Naurois, M.
    Univ Paris Saclay, Lab Leprince Ringuet, Ecole Polytech, CNRS,IN2P3,UMR 7638, F-91128 Palaiseau, France..
    Wilhelmi, E. de Ona
    Univ Paris Saclay, Lab Leprince Ringuet, Ecole Polytech, CNRS,IN2P3,UMR 7638, F-91128 Palaiseau, France..
    de Palma, F.
    Ist Nazl Fis Nucl, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy..
    de Souza, V
    Univ Sao Paulo, Inst Fis Sao Carlos, Av Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil..
    Del Santo, M.
    INAF, Ist Astrofis Spaziale & Fis Cosm Palermo, Via U Malfa 153, I-90146 Palermo, Italy..
    Delgado, C.
    CIEMAT, Avda Complutense 40, E-28040 Madrid, Spain..
    della Volpe, D.
    Univ Geneva, Dept Phys Nucl & Corpusculaire, 24 Rue Gen Dufour, CH-41211 Geneva, Switzerland..
    Di Girolamo, T.
    Ist Nazl Fis Nucl, Sez Napoli, Via Cintia Ed G, I-80126 Naples, Italy..
    Di Pierro, F.
    Ist Nazl Fis Nucl, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy..
    Di Venere, L.
    Ist Nazl Fis Nucl, Sez Bari, Via Orabona 4, I-70124 Bari, Italy.;Univ Bari, Via Orabona 4, I-70124 Bari, Italy..
    Diaz, C.
    CIEMAT, Avda Complutense 40, E-28040 Madrid, Spain..
    Diebold, S.
    Univ Tubingen, Inst Astron & Astrophys, Sand 1, D-72076 Tubingen, Germany..
    Djannati-Atai, A.
    Univ Paris Diderot, Sorbonne Paris Cite, Obs Paris, IRFU,CNRS,IN2P3,APC,CEA, Paris, France.;10 Rue Alice Damon & Leonie Duquet, F-75205 Paris 13, France..
    Dmytriiev, A.
    PSL Res Univ, Observ Paris, CNRS, LUTH & GEPI, 5 Pl Jules Janssen, F-92190 Meudon, France..
    Prester, D. Dominis
    Univ Rijeka, Dept Phys, Radmile Matejc 2, Rijeka 51000, Croatia..
    Donini, A.
    Ist Nazl Fis Nucl, Sez Trieste, Via Sci 208, I-33100 Udine, Italy.;Univ Udine, Via Sci 208, I-33100 Udine, Italy..
    Dorner, D.
    Univ Wurzburg, Inst Theoret Phys & Astrophys, Campus Hubland Nord,Emil Fischer Str 31, D-97074 Wurzburg, Germany..
    Doro, M.
    Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy.;Univ Padua, Via Marzolo 8, I-35131 Padua, Italy..
    Dournaux, J-L
    PSL Res Univ, Observ Paris, CNRS, LUTH & GEPI, 5 Pl Jules Janssen, F-92190 Meudon, France..
    Ebr, J.
    Czech Acad Sci, Inst Phys, Na Slovance 1999-2, Prague 18221 8, Czech Republic..
    Ekoume, T. R. N.
    Univ Geneva, Dept Phys Nucl & Corpusculaire, 24 Rue Gen Dufour, CH-41211 Geneva, Switzerland..
    Elsaesser, D.
    TU Dortmund Univ, Dept Phys, Otto Hahn Str 4, D-44221 Dortmund, Germany..
    Emery, G.
    Univ Paris Diderot, Sorbonne Univ, Lab Phys Nucl & Hautes Energies, Sorbonne Paris Cite,CNRS,IN2P3,LPNHE, 4 Pl Jussieu, F-75005 Paris, France..
    Falceta-Goncalves, D.
    Univ Sao Paulo, Escola Artes Ciencias & Humanidades, Rua Arlindo Bettio 1000, BR-03828000 Sao Paulo, Brazil..
    Fedorova, E.
    Taras Shevchenko Natl Univ Kyiv, Astron Observ, 3 Observatorna St, UA-04053 Kiev, Ukraine..
    Fegan, S.
    Univ Paris Saclay, Lab Leprince Ringuet, Ecole Polytech, CNRS,IN2P3,UMR 7638, F-91128 Palaiseau, France..
    Feng, Q.
    Columbia Univ, Dept Phys, 538 West 120th St, New York, NY 10027 USA..
    Ferrand, G.
    Inst Phys & Chem Res, RIKEN, 2-1 Hirosawa, Wako, Saitama 3510198, Japan..
    Fiandrini, E.
    Ist Nazl Fis Nucl, Sez Perugia, Via A Pascoli, I-06123 Perugia, Italy.;Univ Perugia, Via A Pascoli, I-06123 Perugia, Italy..
    Fiasson, A.
    Univ Savoie Mt Blanc, Univ Grenoble Alpes, LAPP, CNRS,IN2P3, F-74000 Annecy, France.;9 Chemin Bellevue,BP 110, F-74941 Annecy, France..
    Filipovic, M.
    Western Sydney Univ, Locked Bag 1797, Penrith, NSW 1797, Australia..
    Fioretti, V
    INAF, Osservatorio Astrofis & Scienza Spazio Bologna, Via Piero Gobetti 101, I-40129 Bologna, Italy..
    Fiori, M.
    INAF, Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy..
    Flis, S.
    DESY, Platanenallee 6, D-15738 Zeuthen, Germany..
    Fonseca, M. , V
    Fontaine, G.
    Univ Paris Saclay, Lab Leprince Ringuet, Ecole Polytech, CNRS,IN2P3,UMR 7638, F-91128 Palaiseau, France..
    Freixas Coromina, L.
    CIEMAT, Avda Complutense 40, E-28040 Madrid, Spain..
    Fukami, S.
    Univ Tokyo, Inst Cosm Ray Res, 5-1-5 Kashiwa No Ha, Kashiwa, Chiba 2778582, Japan..
    Fukui, Y.
    Nagoya Univ, Dept Phys, Chikusa Ku, Nagoya, Aichi 4648602, Japan..
    Funk, S.
    Univ Erlangen Nurnberg, Phys Inst, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    Fuessling, M.
    Cherenkov Telescope Array Observ, Saupfercheckweg 1, D-69117 Heidelberg, Germany..
    Gaggero, D.
    Univ Amsterdam, GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands.;Univ Autonoma Madrid, Inst Fis Teor, CSIC, Campus Cantoblanco,C Nicolas Cabrera 13-75, E-28049 Madrid, Spain.;Univ Autonoma Madrid, Dept Fis Teor, Campus Cantoblanco,C Nicolas Cabrera 13-75, E-28049 Madrid, Spain..
    Galanti, G.
    INAF, Osservatorio Astron Brera, Via Brera 28, I-20121 Milan, Italy..
    Garcia Lopez, R. J.
    Univ La Laguna, Inst Astrofis Canarias, Tenerife, Spain.;Univ La Laguna, Dept Astrofis, Tenerife, Spain..
    Garczarczyk, M.
    DESY, Platanenallee 6, D-15738 Zeuthen, Germany..
    Gascon, D.
    Univ Barcelona, Inst Ciencies Cosmos, Dept Fis Quant & Astrofis, IEEC UB, Marti & Franques 1, E-08028 Barcelona, Spain..
    Gasparetto, T.
    Ist Nazl Fis Nucl, Sez Trieste, Via Valerio 2 1, I-34127 Trieste, Italy.;Univ Trieste, Via Valerio 2 1, I-34127 Trieste, Italy..
    Gaug, M.
    Univ Autonoma Barcelona, Dept Fis, Unitat Fis Radiac, E-08193 Bellaterra, Spain.;Univ Autonoma Barcelona, CERES IEEC, E-08193 Bellaterra, Spain.;Edif C3,Campus UAB, Bellaterra 08193, Spain..
    Ghalumyan, A.
    Yerevan Phys Inst, Alikhanyan Natl Sci Lab, 2 Alikhanyan Bros St, Yerevan 0036, Armenia..
    Gianotti, F.
    INAF, Osservatorio Astrofis & Scienza Spazio Bologna, Via Piero Gobetti 101, I-40129 Bologna, Italy..
    Giavitto, G.
    DESY, Platanenallee 6, D-15738 Zeuthen, Germany..
    Giglietto, N.
    Ist Nazl Fis Nucl, Sez Bari, Via Orabona 4, I-70124 Bari, Italy.;Politecn Bari, Via Orabona 4, I-70124 Bari, Italy..
    Giordano, F.
    Ist Nazl Fis Nucl, Sez Bari, Via Orabona 4, I-70124 Bari, Italy.;Univ Bari, Via Orabona 4, I-70124 Bari, Italy..
    Giroletti, M.
    INAF, Ist Radioastron, Via Gobetti 101, I-40129 Bologna, Italy..
    Gironnet, J.
    PSL Res Univ, Observ Paris, CNRS, LUTH & GEPI, 5 Pl Jules Janssen, F-92190 Meudon, France..
    Glicenstein, J-F
    Univ Paris Saclay, IRFU, CEA, F-91191 Gif Sur Yvette, France..
    Gnatyk, R.
    Taras Shevchenko Natl Univ Kyiv, Astron Observ, 3 Observatorna St, UA-04053 Kiev, Ukraine..
    Goldoni, P.
    Univ Paris Diderot, Sorbonne Paris Cite, Obs Paris, IRFU,CNRS,IN2P3,APC,CEA, Paris, France.;10 Rue Alice Damon & Leonie Duquet, F-75205 Paris 13, France..
    Gonzalez, J. M.
    Univ Andres Bello UNAB, Republ 252, Santiago, Region Metropol, Chile..
    Gonzalez, M. M.
    Univ Nacl Autonoma Mexico, Ciudad De Mexico 04510, Mexico..
    Gourgouliatos, K. N.
    Univ Durham, Dept Phys, South Rd, Durham DH1 3LE, England.;Univ Durham, Ctr Adv Instrumentat, South Rd, Durham DH1 3LE, England..
    Grabarczyk, T.
    Acad Comp Ctr CYFRONET AGH, Ul Nawojki 11, PL-30950 Krakow, Poland..
    Granot, J.
    Open Univ Israel, Dept Nat Sci, 1 Univ Rd,POB 808, IL-43537 Raanana, Israel..
    Green, D.
    Max Planck Inst Phys & Astrophys, Fuhringer Ring 6, D-80805 Munich, Germany..
    Greenshaw, T.
    Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England..
    Grondin, M-H
    Univ Bordeaux, CENBG, IN2P3, CNRS,UMR 5797, 19 Chemin Solarium,CS 10120, F-33175 Gradignan, France..
    Gueta, O.
    DESY, Platanenallee 6, D-15738 Zeuthen, Germany..
    Hadasch, D.
    Univ Tokyo, Inst Cosm Ray Res, 5-1-5 Kashiwa No Ha, Kashiwa, Chiba 2778582, Japan..
    Hassan, T.
    Barcelona Inst Sci & Technol, Inst Fis Altes Energies, Campus UAB, Bellaterra 08193, Barcelona, Spain..
    Hayashida, M.
    Konan Univ, Dept Phys, Kobe, Hyogo 6588501, Japan..
    Heller, M.
    Univ Geneva, Dept Phys Nucl & Corpusculaire, 24 Rue Gen Dufour, CH-41211 Geneva, Switzerland..
    Hervet, O.
    Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, 1156 High St, Santa Cruz, CA 95064 USA.;Univ Calif Santa Cruz, Dept Phys, 1156 High St, Santa Cruz, CA 95064 USA..
    Hinton, J.
    Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany..
    Hiroshima, N.
    High Energy Accelerator Res Org, Inst Particle & Nucl Studies, KEK, 1-1 Oho, Tsukuba, Ibaraki 3050801, Japan..
    Hnatyk, B.
    Taras Shevchenko Natl Univ Kyiv, Astron Observ, 3 Observatorna St, UA-04053 Kiev, Ukraine..
    Hofmann, W.
    Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany..
    Horvath, P.
    Palacky Univ Olomouc, Fac Sci, RCPTM, 17 Listopadu 1192-12, Olomouc 77146, Czech Republic..
    Hrabovsky, M.
    Palacky Univ Olomouc, Fac Sci, RCPTM, 17 Listopadu 1192-12, Olomouc 77146, Czech Republic..
    Hrupec, D.
    Josip Juraj Strossmayer Univ Osijek, Trg Svetog Trojstva 3, Osijek 31000, Croatia..
    Humensky, T. B.
    Columbia Univ, Dept Phys, 538 West 120th St, New York, NY 10027 USA..
    Huetten, M.
    Max Planck Inst Phys & Astrophys, Fuhringer Ring 6, D-80805 Munich, Germany..
    Inada, T.
    Univ Tokyo, Inst Cosm Ray Res, 5-1-5 Kashiwa No Ha, Kashiwa, Chiba 2778582, Japan..
    Iocco, F.
    Univ Estadual Paulista, ICTP South Amer Inst Fundamental Res, Inst Fis Teor, Rua Dr Bento Teobaldo Ferraz 271, BR-01140070 Sao Paulo, Brazil..
    Ionica, M.
    Ist Nazl Fis Nucl, Sez Perugia, Via A Pascoli, I-06123 Perugia, Italy..
    Iori, M.
    Ist Nazl Fis Nucl, Sez Roma, Piazza Aldo Moro 5 1, I-00185 Rome, Italy..
    Iwamura, Y.
    Univ Tokyo, Inst Cosm Ray Res, 5-1-5 Kashiwa No Ha, Kashiwa, Chiba 2778582, Japan..
    Jamrozy, M.
    Jagiellonian Univ, Fac Phys Astron & Appl Comp Sci, Ul Prof Stanislawa Lojasiewicza 11, PL-30348 Krakow, Poland..
    Janecek, P.
    Czech Acad Sci, Inst Phys, Na Slovance 1999-2, Prague 18221 8, Czech Republic..
    Jankowsky, D.
    Univ Erlangen Nurnberg, Phys Inst, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    Jean, P.
    Univ Paul Sabatier, Inst Rech Astrophys & Planetol, CNRS, INSU, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France..
    Jouvin, L.
    Barcelona Inst Sci & Technol, Inst Fis Altes Energies, Campus UAB, Bellaterra 08193, Barcelona, Spain..
    Jurysek, J.
    Czech Acad Sci, Inst Phys, Na Slovance 1999-2, Prague 18221 8, Czech Republic.;Palacky Univ Olomouc, Fac Sci, RCPTM, 17 Listopadu 1192-12, Olomouc 77146, Czech Republic..
    Kaaret, P.
    Univ Iowa, Dept Phys & Astron, Van Allen Hall, Iowa City, IA 52242 USA..
    Kadowaki, L. H. S.
    Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, Cidade Univ,R Matao 1226, BR-05508090 Sao Paulo, SP, Brazil..
    Karkar, S.
    Univ Paris Diderot, Sorbonne Univ, Lab Phys Nucl & Hautes Energies, Sorbonne Paris Cite,CNRS,IN2P3,LPNHE, 4 Pl Jussieu, F-75005 Paris, France..
    Kerszberg, D.
    Barcelona Inst Sci & Technol, Inst Fis Altes Energies, Campus UAB, Bellaterra 08193, Barcelona, Spain..
    Khelifi, B.
    Univ Paris Diderot, Sorbonne Paris Cite, Obs Paris, IRFU,CNRS,IN2P3,APC,CEA, Paris, France.;10 Rue Alice Damon & Leonie Duquet, F-75205 Paris 13, France..
    Kieda, D.
    Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA..
    Kimeswenger, S.
    Leopold Franzens Univ, Inst Astro & Teilchenphys, Tech Str 25-8, A-6020 Innsbruck, Austria..
    Kluzniak, W.
    Polish Acad Sci, Nicolaus Copernicus Astron Ctr, Ul Bartycka 18, PL-00716 Warsaw, Poland..
    Knapp, J.
    DESY, Platanenallee 6, D-15738 Zeuthen, Germany..
    Knodlseder, J.
    Univ Paul Sabatier, Inst Rech Astrophys & Planetol, CNRS, INSU, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France..
    Kobayashi, Y.
    Univ Tokyo, Inst Cosm Ray Res, 5-1-5 Kashiwa No Ha, Kashiwa, Chiba 2778582, Japan..
    Koch, B.
    Pontificia Univ Catolica Chile, Avda Libertador Bernardo O Higgins 340, Santiago, Chile..
    Kocot, J.
    Acad Comp Ctr CYFRONET AGH, Ul Nawojki 11, PL-30950 Krakow, Poland..
    Komin, N.
    Univ Witwatersrand, 1 Jan Smuts Ave, ZA-2000 Johannesburg, South Africa..
    Kong, A.
    Univ Tokyo, Inst Cosm Ray Res, 5-1-5 Kashiwa No Ha, Kashiwa, Chiba 2778582, Japan..
    Kowal, G.
    Univ Sao Paulo, Escola Artes Ciencias & Humanidades, Rua Arlindo Bettio 1000, BR-03828000 Sao Paulo, Brazil..
    Krause, M.
    DESY, Platanenallee 6, D-15738 Zeuthen, Germany..
    Kubo, H.
    Kyoto Univ, Grad Sch Sci, Div Phys & Astron, Sakyo Ku, Kyoto 6068502, Japan..
    Kushida, J.
    Tokai Univ, Dept Phys, 4-1-1 Kita Kaname, Hiratsuka, Kanagawa 2591292, Japan..
    Kushwaha, P.
    Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, Cidade Univ,R Matao 1226, BR-05508090 Sao Paulo, SP, Brazil..
    La Parola, V
    INAF, Ist Astrofis Spaziale & Fis Cosm Palermo, Via U Malfa 153, I-90146 Palermo, Italy..
    La Rosa, G.
    INAF, Ist Astrofis Spaziale & Fis Cosm Palermo, Via U Malfa 153, I-90146 Palermo, Italy..
    Lallena Arquillo, M.
    CIEMAT, Avda Complutense 40, E-28040 Madrid, Spain..
    Lang, R. G.
    Univ Sao Paulo, Inst Fis Sao Carlos, Av Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil..
    Lapington, J.
    Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England..
    Le Blanc, O.
    PSL Res Univ, Observ Paris, CNRS, LUTH & GEPI, 5 Pl Jules Janssen, F-92190 Meudon, France..
    Lefaucheur, J.
    Univ Paris Saclay, Univ Paris Diderot, Sorbonne Paris Cite, CNRS,AIM,CEA, F-91191 Gif Sur Yvette, France..
    Leigui de Oliveira, M. A.
    Univ Fed ABC, Ctr Ciencias Naturais & Humanas, Rua Santa Adelia 166, BR-09210170 Santo Andre, SP, Brazil..
    Lemoine-Goumard, M.
    Univ Bordeaux, CENBG, IN2P3, CNRS,UMR 5797, 19 Chemin Solarium,CS 10120, F-33175 Gradignan, France..
    Lenain, J-P
    Univ Paris Diderot, Sorbonne Univ, Lab Phys Nucl & Hautes Energies, Sorbonne Paris Cite,CNRS,IN2P3,LPNHE, 4 Pl Jussieu, F-75005 Paris, France..
    Leto, G.
    INAF, Osservatorio Astrofis Catania, Via S Sofia 78, I-95123 Catania, Italy..
    Lico, R.
    INAF, Ist Radioastron, Via Gobetti 101, I-40129 Bologna, Italy..
    Lindfors, E.
    Univ Turku, Dept Phys & Astron, Tuorla Observ, FI-21500 Piikkio, Finland..
    Lohse, T.
    Humboldt Univ, Dept Phys, Newtonstr 15, D-12489 Berlin, Germany..
    Lombardi, S.
    INAF, Osservatorio Astronom Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy..
    Longo, F.
    Ist Nazl Fis Nucl, Sez Trieste, Via Valerio 2 1, I-34127 Trieste, Italy.;Univ Trieste, Via Valerio 2 1, I-34127 Trieste, Italy..
    Lopez, A.
    Univ La Laguna, Inst Astrofis Canarias, Tenerife, Spain.;Univ La Laguna, Dept Astrofis, Tenerife, Spain..
    Lopez, M.
    Univ Complutense Madrid, EMFTEL Dept, E-28040 Madrid, Spain.;Univ Complutense Madrid, IPARCOS, E-28040 Madrid, Spain..
    Lopez-Oramas, A.
    CIEMAT, Avda Complutense 40, E-28040 Madrid, Spain..
    Lopez-Coto, R.
    Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy.;Univ Padua, Via Marzolo 8, I-35131 Padua, Italy..
    Loporchio, S.
    Ist Nazl Fis Nucl, Sez Bari, Via Orabona 4, I-70124 Bari, Italy.;Univ Bari, Via Orabona 4, I-70124 Bari, Italy..
    Luque-Escamilla, P. L.
    Univ Jaen, Escuela Politecn Super Jaen, Campus Lagunillas S-N,Edif A3, Jaen 23071, Spain..
    Lyard, E.
    Univ Geneva, ISDC Data Ctr Astrophys, Observ Geneva, Chemin Ecogia 16, CH-1290 Versoix, Switzerland..
    Maccarone, M. C.
    INAF, Ist Astrofis Spaziale & Fis Cosm Palermo, Via U Malfa 153, I-90146 Palermo, Italy..
    Mach, E.
    Polish Acad Sci, Hernyk Niewodniczanski Inst Nucl Phys, Ul Radzikowskiego 152, PL-31342 Krakow, Poland..
    Maggio, C.
    Univ Autonoma Barcelona, Dept Fis, Unitat Fis Radiac, E-08193 Bellaterra, Spain.;Univ Autonoma Barcelona, CERES IEEC, E-08193 Bellaterra, Spain.;Edif C3,Campus UAB, Bellaterra 08193, Spain..
    Majumdar, P.
    Saha Inst Nucl Phys, Kolkata 700064, India..
    Malaguti, G.
    INAF, Osservatorio Astrofis & Scienza Spazio Bologna, Via Piero Gobetti 101, I-40129 Bologna, Italy..
    Mallamaci, M.
    Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy.;Univ Padua, Via Marzolo 8, I-35131 Padua, Italy..
    Mandat, D.
    Czech Acad Sci, Inst Phys, Na Slovance 1999-2, Prague 18221 8, Czech Republic..
    Maneva, G.
    Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, 72 Boul Tsarigradsko Chaussee, BU-1784 Sofia, Bulgaria..
    Manganaro, M.
    Univ Rijeka, Dept Phys, Radmile Matejc 2, Rijeka 51000, Croatia..
    Mangano, S.
    CIEMAT, Avda Complutense 40, E-28040 Madrid, Spain..
    Marculewicz, M.
    Univ Bialystok, Fac Phys, Ul K Ciolkowskiego 1L, PL-15254 Bialystok, Poland..
    Mariotti, M.
    Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy.;Univ Padua, Via Marzolo 8, I-35131 Padua, Italy..
    Marti, J.
    Univ Jaen, Escuela Politecn Super Jaen, Campus Lagunillas S-N,Edif A3, Jaen 23071, Spain..
    Martinez, M.
    Barcelona Inst Sci & Technol, Inst Fis Altes Energies, Campus UAB, Bellaterra 08193, Barcelona, Spain..
    Martinez, G.
    CIEMAT, Avda Complutense 40, E-28040 Madrid, Spain..
    Martinez-Huerta, H.
    Univ Sao Paulo, Inst Fis Sao Carlos, Av Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil..
    Masuda, S.
    Kyoto Univ, Grad Sch Sci, Div Phys & Astron, Sakyo Ku, Kyoto 6068502, Japan..
    Maxted, N.
    Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia..
    Mazin, D.
    Univ Tokyo, Inst Cosm Ray Res, 5-1-5 Kashiwa No Ha, Kashiwa, Chiba 2778582, Japan.;Max Planck Inst Phys & Astrophys, Fuhringer Ring 6, D-80805 Munich, Germany..
    Meunier, J-L
    Univ Paris Diderot, Sorbonne Univ, Lab Phys Nucl & Hautes Energies, Sorbonne Paris Cite,CNRS,IN2P3,LPNHE, 4 Pl Jussieu, F-75005 Paris, France..
    Meyer, M.
    Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.;Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, SIAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA..
    Micanovic, S.
    Univ Rijeka, Dept Phys, Radmile Matejc 2, Rijeka 51000, Croatia..
    Millul, R.
    INAF, Osservatorio Astron Brera, Via Brera 28, I-20121 Milan, Italy..
    Minaya, I. A.
    Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England..
    Mitchell, A.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland..
    Mizuno, T.
    Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Higashihiroshima, Hiroshima 7398526, Japan..
    Moderski, R.
    Polish Acad Sci, Nicolaus Copernicus Astron Ctr, Ul Bartycka 18, PL-00716 Warsaw, Poland..
    Mohrmann, L.
    Univ Erlangen Nurnberg, Phys Inst, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    Montaruli, T.
    Univ Geneva, Dept Phys Nucl & Corpusculaire, 24 Rue Gen Dufour, CH-41211 Geneva, Switzerland..
    Moralejo, A.
    Barcelona Inst Sci & Technol, Inst Fis Altes Energies, Campus UAB, Bellaterra 08193, Barcelona, Spain..
    Morcuende, D.
    Univ Complutense Madrid, EMFTEL Dept, E-28040 Madrid, Spain.;Univ Complutense Madrid, IPARCOS, E-28040 Madrid, Spain..
    Morlino, G.
    Univ Aquila, Dipartimento Sci Fis & Chim, Ist Nazl Fis Nucl, Via Vetoio 1,Viale Crispi 7, I-67100 Laquila, Italy.;Gran Sasso Sci Inst, Via Vetoio 1,Viale Crispi 7, I-67100 Laquila, Italy..
    Morselli, A.
    Polish Acad Sci, Nicolaus Copernicus Astron Ctr, Ul Bartycka 18, PL-00716 Warsaw, Poland..
    Moulin, E.
    Univ Paris Saclay, IRFU, CEA, F-91191 Gif Sur Yvette, France..
    Mukherjee, R.
    Columbia Univ, Dept Phys, 538 West 120th St, New York, NY 10027 USA..
    Munar, P.
    INAF, Ist Astrofis & Planetol Spaziali IAPS, Via Fosso Cavaliere 100, I-00133 Rome, Italy..
    Mundell, C.
    Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England..
    Murach, T.
    DESY, Platanenallee 6, D-15738 Zeuthen, Germany..
    Nagai, A.
    Univ Geneva, Dept Phys Nucl & Corpusculaire, 24 Rue Gen Dufour, CH-41211 Geneva, Switzerland..
    Nagayoshi, T.
    Saitama Univ, Grad Sch Sci & Engn, Sakura Ku, 255 Simo Ohkubo, Saitama, Saitama 3388570, Japan..
    Naito, T.
    Yamanashi Gakuin Univ, Fac Management Informat, Kofu, Yamanashi 4008575, Japan..
    Nakamori, T.
    Yamagata Univ, Dept Phys, Yamagata, Yamagata 9908560, Japan..
    Nemmen, R.
    Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, Cidade Univ,R Matao 1226, BR-05508090 Sao Paulo, SP, Brazil..
    Niemiec, J.
    Polish Acad Sci, Hernyk Niewodniczanski Inst Nucl Phys, Ul Radzikowskiego 152, PL-31342 Krakow, Poland..
    Nieto, D.
    Univ Complutense Madrid, EMFTEL Dept, E-28040 Madrid, Spain.;Univ Complutense Madrid, IPARCOS, E-28040 Madrid, Spain..
    Rosillo, M. Nievas
    DESY, Platanenallee 6, D-15738 Zeuthen, Germany..
    Nikolajuk, M.
    Univ Bialystok, Fac Phys, Ul K Ciolkowskiego 1L, PL-15254 Bialystok, Poland..
    Ninci, D.
    Barcelona Inst Sci & Technol, Inst Fis Altes Energies, Campus UAB, Bellaterra 08193, Barcelona, Spain..
    Nishijima, K.
    Tokai Univ, Dept Phys, 4-1-1 Kita Kaname, Hiratsuka, Kanagawa 2591292, Japan..
    Noda, K.
    Univ Tokyo, Inst Cosm Ray Res, 5-1-5 Kashiwa No Ha, Kashiwa, Chiba 2778582, Japan..
    Nosek, D.
    Charles Univ Prague, Inst Particle & Nucl Phys, V Holesovickach 2, Prague 18000 8, Czech Republic..
    Noethe, M.
    TU Dortmund Univ, Dept Phys, Otto Hahn Str 4, D-44221 Dortmund, Germany..
    Nozaki, S.
    Kyoto Univ, Grad Sch Sci, Div Phys & Astron, Sakyo Ku, Kyoto 6068502, Japan..
    Ohishi, M.
    Univ Tokyo, Inst Cosm Ray Res, 5-1-5 Kashiwa No Ha, Kashiwa, Chiba 2778582, Japan..
    Ohtani, Y.
    Univ Tokyo, Inst Cosm Ray Res, 5-1-5 Kashiwa No Ha, Kashiwa, Chiba 2778582, Japan..
    Okumura, A.
    Nagoya Univ, Inst Space Earth Environm Res, Chikusa Ku, Nagoya, Aichi 4648601, Japan..
    Ong, R. A.
    Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA..
    Punch, Michael
    Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för fysik och elektroteknik (IFE). Univ Paris Diderot, France.
    Monte Carlo studies for the optimisation of the Cherenkov Telescope Array layout2019Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 111, s. 35-53Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Cherenkov Telescope Array (CTA) is the major next-generation observatory for ground-based veryhigh-energy gamma-ray astronomy. It will improve the sensitivity of current ground-based instruments by a factor of five to twenty, depending on the energy, greatly improving both their angular and energy resolutions over four decades in energy (from 20 GeV to 300 TeV). This achievement will be possible by using tens of imaging Cherenkov telescopes of three successive sizes. They will be arranged into two arrays, one per hemisphere, located on the La Palma island (Spain) and in Paranal (Chile). We present here the optimised and final telescope arrays for both CTA sites, as well as their foreseen performance, resulting from the analysis of three different large-scale Monte Carlo productions.

  • 7. Ageron, M.
    et al.
    Aguilar, J. A.
    Albert, A.
    Ameli, F.
    Anghinolfi, M.
    Anton, G.
    Anvar, S.
    Ardid, M.
    Aubert, J. -J
    Aublin, J.
    Auer, R.
    Basa, S.
    Bazzotti, M.
    Becherini, Yvonne
    l'Univers - Service de Physique des Particules.
    Bertin, V.
    Biagi, S.
    Bigi, A.
    Bigongiari, C.
    Bou-Cabo, M.
    Bouwhuis, M. C.
    Bruijn, R.
    Brunner, J.
    Burgio, G. F.
    Busto, J.
    Camarena, F.
    Capone, A.
    Carminati, G.
    Carr, J.
    Castel, D.
    Castorina, E.
    Cavasinni, V.
    Cecchini, S.
    Charvis, Ph.
    Chiarusi, T.
    Circella, M.
    Colnard, C.
    Coniglione, R.
    Costantini, H.
    Cottini, N.
    Coyle, P.
    De Bonis, G.
    Decowski, P.
    Dekeyser, I.
    Deschamps, A.
    Donzaud, C.
    Dornic, D.
    Drouhin, D.
    Druillole, F.
    Eberl, T.
    Ernenwein, J. -P
    Escoffier, S.
    Falchini, E.
    Fehr, F.
    Flaminio, V.
    Fratini, K.
    Fuda, J. -L
    Giacomelli, G.
    Graf, K.
    Guillard, G.
    Hallewell, G.
    Hello, Y.
    Hernandez-Rey, J. J.
    Hossl, J.
    de Jong, M.
    Kalantar-Nayestanaki, N.
    Kalekin, O.
    Kappes, A.
    Katz, U.
    Kooijman, P.
    Kopper, C.
    Kouchner, A.
    Kretschmer, W.
    Kuch, S.
    Lahmann, R.
    Lamare, P.
    Lambard, G.
    Laschinsky, H.
    Lavalle, J.
    Le Provost, H.
    Lefevre, D.
    Lelaizant, G.
    Lim, G.
    Lo Presti, D.
    Loehner, H.
    Loucatos, S.
    Louis, F.
    Lucarelli, F.
    Lyons, K.
    Mangano, S.
    Marcelin, M.
    Margiotta, A.
    Martinez-Mora, J. A.
    Maurin, G.
    Mazure, A.
    Melissas, M.
    Migneco, E.
    Montaruli, T.
    Morganti, M.
    Moscoso, L.
    Motz, H.
    Naumann, C.
    Ostasch, R.
    Pavalas, G. E.
    Payre, P.
    Petrovic, J.
    Petta, C.
    Piattelli, P.
    Picq, C.
    Pillet, R.
    Popa, V.
    Pradier, T.
    Presani, E.
    Racca, C.
    Radu, A.
    Reed, C.
    Richardt, C.
    Rujoiu, M.
    Ruppi, M.
    Russo, G. V.
    Salesa, F.
    Sapienza, P.
    Schoeck, F.
    Schuller, J. -P
    Shanidze, R.
    Simeone, F.
    Spurio, M.
    van der Steenhoven, G.
    Tamburini, C.
    Tasca, L.
    Toscano, S.
    Vecchi, M.
    Vernin, P.
    Wijnker, G.
    de Wolf, E.
    Zaborov, D.
    Zornoza, J. D.
    Zuniga, J.
    Performance of the first ANTARES detector line2009Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 31, nr 4, s. 277-283Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this paper we report on the data recorded with the first Antares detector line. The line was deployed on the 14th of February 2006 and was connected to the readout 2 weeks later. Environmental data for one and a half years of running are shown. Measurements of atmospheric muons from data taken from selected runs during the first 6 months of operation are presented. Performance figures in terms of time residuals and angular resolution are given. Finally the angular distribution of atmospheric muons is presented and from this the depth profile of the muon intensity is derived. (C) 2009 Elsevier B.V. All rights reserved.

  • 8. Aglietta, M
    et al.
    Alessandro, B
    Antonioli, P
    Arneodo, F
    Bergamasco, L
    Bertaina, M
    Castagnoli, C
    Castellina, A
    Chiavassa, A
    Cini, G
    Piazzoli, B D
    Di Sciascio, G
    Fulgione, W
    Galeotti, P
    Ghia, P L
    Iacovacci, M
    Mannocchi, G
    Morello, C
    Navarra, G
    Saavedra, O
    Stamerra, A
    Trinchero, G C
    Valchierotti, S
    Vallania, P
    Vernetto, S
    Vigorito, C
    Ambrosio, M
    Antolini, R
    Baldini, A
    Barbarino, G C
    Barish, B C
    Battistoni, G
    Becherini, Yvonne
    Università di Bologna, Italy ; INFN, Italy.
    Bellotti, R
    Bemporad, C
    Bernardini, P
    Bilokon, H
    Bower, C
    Brigida, M
    Bussino, S
    Cafagna, F
    Calicchio, M
    Campana, D
    Carboni, M
    Caruso, R
    Cecchini, S
    Cei, F
    Chiarella, V
    Chiarusi, T
    Choudhary, B C
    Coutu, S
    Cozzi, M
    De Cataldo, G
    Dekhissi, H
    De Marzo, C
    De Mitri, I
    Derkaoui, J
    De Vincenzi, M
    Di Credico, A
    Erriquez, O
    Favuzzi, C
    Forti, C
    Fusco, P
    Giacomelli, G
    Giannini, G
    Giglietto, N
    Giorgini, M
    Grassi, M
    Grillo, A
    Guarino, F
    Gustavino, C
    Habig, A
    Hanson, K
    Heinz, R
    Iarocci, E
    Katsavounidis, E
    Katsavounidis, I
    Kearns, E
    Kim, H
    Kyriazopoulou, S
    Lamanna, E
    Lane, C
    Levin, D S
    Lipari, P
    Longley, N P
    Longo, M J
    Loparco, F
    Maaroufi, F
    Mancarella, G
    Mandrioli, G
    Margiotta, A
    Marini, A
    Martello, D
    Marzari-Chiesa, A
    Mazziotta, M N
    Michael, D G
    Monacelli, P
    Montaruli, T
    Monteno, M
    Mufson, S
    Musser, J
    Nicolo, D
    Nolty, R
    Orth, C
    Osteria, G
    Palamara, O
    Patera, V
    Patrizii, L
    Pazzi, R
    Peck, C W
    Perrone, L
    Petrera, S
    Popa, V
    Raino, A
    Reynoldson, J
    Ronga, F
    Satriano, C
    Scapparone, E
    Scholberg, K
    Sciubba, A
    Sioli, M
    Sirri, G
    Sitta, M
    Spinelli, P
    Spinetti, M
    Spurio, M
    Steinberg, R
    Stone, J L
    Sulak, L R
    Surdo, A
    Tarle, G
    Togo, V
    Vakili, M
    Walter, C W
    Webb, R
    The cosmic ray proton, helium and CNO fluxes in the 100 TeV energy region from TeV muons and EAS atmospheric Cherenkov light observations of MACRO and EAS-TOP2004Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 21, nr 3, s. 223-240Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The primary cosmic ray (CR) proton, helium and CNO fluxes in the energy range 80-300 TeV are studied at the National Gran Sasso Laboratories by means of EAS-TOP (Campo Imperatore, 2005 m a.s.l.) and MACRO (deep underground, 3100 m w.e., the surface energy threshold for a muon reaching the detector being E-mu(th) approximate to 1.3 TeV). The measurement is based on: (a) the selection of primaries based on their energy/nucleon (i.e., with energy/nucleon sufficient to produce a muon with energy larger than 1.3 TeV) and the reconstruction of the shower geometry by means of the muons recorded by MACRO in the deep underground laboratories; (b) the detection of the associated atmospheric Cherenkov light (C.l.) signals by means of the C.l. detector of EAS-TOP. The C.l. density at core distance r > 100 m is directly related to the total primary energy E-0. Proton and helium ("p + He") and proton, helium and CNO ("p + He + CNO") primaries are thus selected at E-0 approximate to 80 TeV, and at E-0 similar or equal to 250 TeV, respectively. Their flux is measured: J(p+He)(80 TeV) = (1.8 +/- 0.4) x 10(-6) m(-1)-s(-1) sr(-1) TeV-1, and J(p+He+CNO)(250 TeV) = (1.1 +/- 0.3) x 10(-7) m(-2)-s(-1) sr(-1) TeV-1, their relative weights being J(p+He)(J(p+He+CNO)) over bar (250 TeV) = 0.78 +/- 0.17. By using the measurements of the proton spectrum obtained from the direct experiments and hadron flux data in the atmosphere, we obtain for the relative weights of the three components at 250 TeV: J(p) : J(He) : J(CNO) = (0.20 +/- 0.08) : (0.58 +/- 0.19) : (0.22 +/- 0.17). This corresponds to the dominance of helium over proton primaries at 100-1000 TeV, and a possible non-negligible contribution from CNO. The lateral distribution of Cherenkov light in Extensive Air Showers (EASs), which is related to the rate of energy deposit of the primary in the atmosphere, is measured for a selected proton and helium primary beam, and good agreement is found when compared with the one calculated with the CORSIKA/QGSJET simulation model. (C) 2004 Elsevier B.V. All rights reserved.

  • 9. Aglietta, M
    et al.
    Alessandro, B
    Antonioli, P
    Arneodo, F
    Bergamasco, L
    Bertaina, M
    Castagnoli, C
    Castellina, A
    Chiavassa, A
    Cini, G
    Piazzoli, B D
    Di Sicascio, G
    Fulgione, W
    Galeotti, P
    Ghia, P L
    Iacovacci, M
    Mannocchi, G
    Morello, C
    Navarra, G
    Saavedra, O
    Stamerra, A
    Trinchero, G C
    Valchierotti, S
    Vallania, P
    Vernetto, S
    Vigorito, C
    Ambrosio, M
    Antolini, R
    Baldini, A
    Barbarino, G C
    Barish, B C
    Battistoni, G
    Becherini, Yvonne
    Università di Bologna, Italy ; INFN, Italy.
    Bellotti, R
    Bemporad, C
    Bernardini, P
    Bilokon, H
    Bower, C
    Brigida, M
    Bussino, S
    Cafagna, F
    Calicchio, M
    Campana, D
    Carboni, M
    Caruso, R
    Cecchini, S
    Cei, F
    Chiarella, V
    Choudhary, B C
    Coutu, S
    Cozzi, M
    De Cataldo, G
    Dekhissi, H
    De Marzo, C
    De Mitri, I
    Derkaoui, J
    De Vincenzi, M
    Di Credico, A
    Erriquez, O
    Favuzzi, C
    Forti, C
    Fusco, P
    Giacomelli, G
    Giannini, G
    Giglietto, N
    Giorgini, M
    Grassi, M
    Grillo, A
    Guarino, F
    Gustavino, C
    Habig, A
    Hanson, K
    Heinz, R
    Iarocci, E
    Katsavounidis, E
    Katsavounidis, I
    Kearns, E
    Kim, H
    Kyriazopoulou, S
    Lamanna, E
    Lane, C
    Levin, D S
    Lipari, P
    Longley, N P
    Longo, M J
    Loparco, F
    Maaroufi, F
    Mancarella, G
    Mandrioli, G
    Margiotta, A
    Marini, A
    Martello, D
    Marzari-Chiesa, A
    Mazziotta, M N
    Michael, D G
    Monacelli, P
    Montaruli, T
    Monteno, M
    Mufson, S
    Musser, J
    Nicolo, D
    Nolty, R
    Orth, C
    Osteria, G
    Palamara, O
    Patera, V
    Patrizii, L
    Pazzi, R
    Peck, C W
    Perrone, L
    Petrera, S
    Popa, V
    Raino, A
    Reynoldson, J
    Ronga, F
    Satriano, C
    Scapparone, E
    Scholberg, K
    Sciubba, A
    Serra, P
    Sioli, M
    Sirri, G
    Sitta, M
    Spinelli, P
    Spinetti, M
    Spurio, M
    Steinberg, R
    Stone, J L
    Sulak, L R
    Surdo, A
    Tarle, G
    Togo, V
    Vakili, M
    Walter, C W
    Webb, R
    The cosmic ray primary composition between 10(15) and 10(16) eV from Extensive Air Showers electromagnetic and TeV muon data2004Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 20, nr 6, s. 641-652Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The cosmic ray primary composition in the energy range between 10(15) and 10(16) eV, i.e., around the "knee" of the primary spectrum, has been studied through the combined measurements of the EAS-TOP air shower array (2005 m a. s.l., 10(5) m(2) collecting area) and the MACRO underground detector (963 m.a.s.l., 3100 m w.e. of minimum rock overburden, 920 m(2) effective area) at the National Gran Sasso Laboratories. The used observables are the air shower size (N-c) measured by EAS-TOP and the muon number (N-mu) recorded by MACRO. The two detectors are separated on average by 1200 m of rock, and located at a respective zenith angle of about 30degrees. The energy threshold at the surface for muons reaching the MACRO depth is approximately 1.3 TeV. Such muons are produced in the early stages of the shower development and in a kinematic region quite different from the one relevant for the usual N-mu - N-e studies. The measurement leads to a primary composition becoming heavier at the knee of the primary spectrum, the knee itself resulting from the steepening of the spectrum of a primary light component (p, He) of Deltay = 0.7 +/- 0.4 at E-0 similar to 4 x 10(15) eV. The result confirms the ones reported from the observation of the low energy muons at the surface (typically in the GeV energy range), showing that the conclusions do not depend on the production region kinematics. Thus, the hadronic interaction model used (CORSIKA/QGSJET) provides consistent composition results from data related to secondaries produced in a rapidity region exceeding the central one. Such an evolution of the composition in the knee region supports the "standard" galactic acceleration/propagation models that imply rigidity dependent breaks of the different components.. and therefore breaks occurring at lower energies in the spectra of the light nuclei. (C) 2003 Elsevier B.V. All rights reserved.

  • 10. Aguilar, J. A.
    et al.
    Albert, A.
    Ameli, F.
    Anghinolfi, M.
    Anton, G.
    Anvar, S.
    Aslanides, E.
    Aubert, J. -J
    Barbarito, E.
    Basa, S.
    Battaglieri, M.
    Becherini, Yvonne
    Università e Sezione INFN, Italy.
    Bellotti, R.
    Beltramelli, J.
    Bertin, V.
    Bigi, A.
    Billault, M.
    Blaes, R.
    de Botton, N.
    Bouwhuis, M. C.
    Bradbury, S. M.
    Bruijn, R.
    Brunner, J.
    Burgio, G. F.
    Busto, J.
    Cafagna, F.
    Caillat, L.
    Calzas, A.
    Capone, A.
    Caponetto, L.
    Carmona, E.
    Carr, J.
    Cartwright, S. L.
    Castel, D.
    Castorina, E.
    Cavasinni, V.
    Cecchini, S.
    Ceres, A.
    Charvis, P.
    Chauchot, P.
    Chiarusi, T.
    Circella, M.
    Colnard, C.
    Compere, C.
    Coniglione, R.
    Cottini, N.
    Coyle, P.
    Cuneo, S.
    Cussatlegras, A. -S
    Damy, G.
    van Dantzig, R.
    De Marzo, C.
    Dekeyser, I.
    Delagnes, E.
    Denans, D.
    Deschamps, A.
    Dessages-Ardellier, F.
    Destelle, J. -J
    Dinkespieler, B.
    Distefano, C.
    Donzaud, C.
    Drogou, J. -F
    Druillole, F.
    Durand, D.
    Ernenwein, J. -P
    Escoffier, S.
    Falchini, E.
    Favard, S.
    Feinstein, F.
    Ferry, S.
    Festy, D.
    Fiorello, C.
    Flaminio, V.
    Galeotti, S.
    Gallone, J. -M
    Giacomelli, G.
    Girard, N.
    Gojak, C.
    Goret, Ph.
    Graf, K.
    Hallewell, G.
    Harakeh, M. N.
    Hartmann, B.
    Heijboer, A.
    Heine, E.
    Hello, Y.
    Hernandez-Rey, J. J.
    Hoessl, J.
    Hoffman, C.
    Hogenbirk, J.
    Hubbard, J. R.
    Jaquet, M.
    Jaspers, M.
    de Jong, M.
    Jouvenot, F.
    Kalantar-Nayestanaki, N.
    Kappes, A.
    Karg, T.
    Karkar, S.
    Katz, U.
    Keller, P.
    Kok, H.
    Kooijman, P.
    Kopper, C.
    Korolkova, E. V.
    Kouchner, A.
    Kretschmer, W.
    Kruijer, A.
    Kuch, S.
    Kudryavstev, V. A.
    Lachartre, D.
    Lafoux, H.
    Lagier, P.
    Lahmann, R.
    Lamanna, G.
    Lamare, P.
    Languillat, J. C.
    Laschinsky, H.
    Le Guen, Y.
    Le Provost, H.
    Van Suu, A. Le
    Legou, T.
    Lim, G.
    Lo Nigro, L.
    Lo Presti, D.
    Loehner, H.
    Loucatos, S.
    Louis, F.
    Lucarelli, F.
    Lyashuk, V.
    Marcelin, M.
    Margiotta, A.
    Masullo, R.
    Mazeas, F.
    Mazure, A.
    McMillan, J. E.
    Megna, R.
    Melissas, M.
    Migneco, E.
    Milovanovic, A.
    Mongelli, M.
    Montaruli, T.
    Morganti, M.
    Moscoso, L.
    Musumeci, M.
    Naumann, C.
    Naumann-Godo, M.
    Niess, V.
    Olivetto, C.
    Ostasch, R.
    Palanque-Delabrouille, N.
    Payre, P.
    Peek, H.
    Petta, C.
    Piattelli, P.
    Pineau, J. -P
    Poinsignon, J.
    Popa, V.
    Pradier, T.
    Racca, C.
    Randazzo, N.
    van Randwijk, J.
    Real, D.
    van Rens, B.
    Rethore, F.
    Rewiersma, P.
    Riccobene, G.
    Rigaud, V.
    Ripani, M.
    Roca, V.
    Roda, C.
    Rolin, J. F.
    Romita, M.
    Rose, H. J.
    Rostovtsev, A.
    Roux, J.
    Ruppi, M.
    Russo, G. V.
    Salesa, F.
    Salomon, K.
    Sapienza, P.
    Schmitt, F.
    Schuller, J. -P
    Shanidze, R.
    Sokalski, I.
    Spona, T.
    Spurio, M.
    van der Steenhoven, G.
    Stolarczyk, T.
    Streeb, K.
    Stubert, D.
    Sulak, L.
    Taiuti, M.
    Tamburini, C.
    Tao, C.
    Terreni, G.
    Thompson, L. F.
    Valdy, P.
    Valente, V.
    Vallage, B.
    Venekamp, G.
    Verlaat, B.
    Vernin, P.
    de Vita, R.
    de Vries, G.
    van Wijk, R.
    Huberts, P. de Witt
    Wobbe, G.
    de Wolf, E.
    Yao, A. -F
    Zaborov, D.
    Zaccone, H.
    Zornoza, J. D.
    Zuniga, J.
    First results of the instrumentation line for the deep-sea ANTARES neutrino telescope2006Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 26, nr 4-5, s. 314-324Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In 2005, the ANTARES Collaboration deployed and operated at a depth of 2500 m a so-called Mini Instrumentation Line equipped with Optical Modules (MILOM) at the ANTARES site. The various data acquired during the continuous operation from April to December 2005 of the MILOM confirm the satisfactory performance of the Optical Modules, their front-end electronics and readout system. as well as the calibration devices of the detector. The in situ measurement of the Optical Module time response yields a resolution better than 0.5 ns. The performance of the acoustic positioning system, which enables the spatial reconstruction of the ANTARES detector with a precision of about 10 cm, is verified. These results demonstrate that with the full ANTARES neutrino telescope the design angular resolution of better than 0.3 degrees can be realistically achieved.

  • 11. Aguilar, J A
    et al.
    Albert, A
    Amram, P
    Anghinolfi, M
    Anton, G
    Anvar, S
    Ardellier-Desages, F E
    Aslanides, E
    Aubert, J J
    Azoulay, R
    Bailey, D
    Basa, S
    Battaglieri, M
    Becherini, Yvonne
    Università e Sezione INFN, Italy.
    Bellotti, R
    Beltramelli, J
    Bertin, V
    Billault, M
    Blaes, R
    Blanc, F
    Bland, R W
    de Botton, N
    Boulesteix, J
    Bouwhuis, M C
    Brooks, C B
    Bradbury, S M
    Bruijn, R
    Brunner, J
    Bugeon, F
    Burgio, G F
    Cafagna, F
    Calzas, A
    Caponetto, L
    Carmona, E
    Carr, J
    Cartwright, S L
    Cecchini, S
    Charvis, P
    Circella, M
    Colnard, C
    Compere, C
    Croquette, J
    Cooper, S
    Coyle, P
    Cuneo, S
    Damy, G
    van Dantzig, R
    Deschamps, A
    De Marzo, C
    Destelle, J J
    De Vita, R
    Dinkelspiler, B
    Dispau, G
    Drougou, J F
    Druillole, F
    Engelen, J
    Favard, S
    Feinstein, F
    Ferry, S
    Festy, D
    Fopma, J
    Fuda, J L
    Gallone, J M
    Giacomelli, G
    Girard, N
    Goret, P
    Gournay, J F
    Hallewell, G
    Hartmann, B
    Heijboer, A
    Hello, Y
    Hernandez-Rey, J J
    Herrouin, G
    Hossl, J
    Hoffmann, C
    Hubbard, J R
    Jaquet, M
    de Jong, M
    Jouvenot, F
    Kappes, A
    Karg, T
    Karkar, S
    Karolak, M
    Katz, U
    Keller, P
    Kooijman, P
    Korolkova, E V
    Kouchner, A
    Kretschmer, W
    Kudryavtsev, V A
    Lafoux, H
    Lagier, P
    Lamare, P
    Languillat, J C
    Laubler, L
    Legou, T
    Le Guen, Y
    Le Provost, H
    Le van Suu, A
    Lo Nigro, L
    Lo Presti, D
    Loucatos, S
    Louis, F
    Lyashuk, V
    Magnier, P
    Marcelin, M
    Margiotta, A
    Maron, C
    Massol, A
    Mazeas, F
    Mazeau, B
    Mazure, A
    McMillan, J E
    Michel, J L
    Millot, C
    Milovanovic, A
    Montanet, F
    Montaruli, T
    Morel, J P
    Moscoso, L
    Nezri, E
    Niess, V
    Nooren, G J
    Ogden, P
    Olivetto, C
    Palanque-Delabrouille, N
    Payre, P
    Petta, C
    Pineau, J P
    Poinsignon, J
    Popa, V
    Potheau, R
    Pradier, T
    Racca, C
    Randazzo, N
    Real, D
    van Rens, B A P
    Rethore, F
    Ripani, M
    Roca-Blay, V
    Romeyer, A
    Rollin, J F
    Romita, M
    Rose, H J
    Rostovtsev, A
    Ruppi, M
    Russo, G V
    Sacquin, Y
    Saouter, S
    Schuller, J P
    Schuster, W
    Sokalski, I
    Suvorova, O
    Spooner, N J C
    Spurio, M
    Stolarczyk, T
    Stubert, D
    Taiuti, M
    Thompson, L F
    Tilav, S
    Usik, A
    Valdy, P
    Vallage, B
    Vaudaine, G
    Vernin, P
    Virieux, J
    Vladimirsky, E
    de Vries, G
    Huberts, P D
    de Wolf, E
    Zaborov, D
    Zaccone, H
    Zakharov, V
    Zavatarelli, S
    de Zornoza, J D
    Zuniga, J
    Transmission of light in deep sea water at the site of the ANTARES neutrino telescope2005Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 23, nr 1, s. 131-155Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The ANTARES neutrino telescope is a large photomultiplier array designed to detect neutrino-induced upward-going muons by their Cherenkov radiation. Understanding the absorption and scattering of light in the deep Mediterranean is fundamental to optimising the design and performance of the detector. This paper presents measurements of blue and UV light transmission at the ANTARES site taken between 1997 and 2000. The derived values for the scattering length and the angular distribution of particulate scattering were found to be highly correlated, and results are therefore presented in terms of an absorption length;,ab, and an effective scattering length lambda(sct)(eff). The values for blue (UV) light are found to be lambda(abs) similar or equal to 60(26) m, lambda(sct)(eff similar or equal to) 265(122) m, with significant (similar to15%) time variability. Finally, the results of ANTARES simulations showing the effect of these water properties on the anticipated performance of the detector are presented. (C) 2004 Elsevier B.V. All rights reserved.

  • 12. Ahrens, J.
    et al.
    Ackermann, M.
    Andres, E.
    Bai, X.
    Barwick, S. W.
    Bay, R. C.
    Becka, T.
    Becker, K. -H
    Bernardini, E.
    Bertrand, D.
    Binon, F.
    Biron, A.
    Boersma, D. J.
    Böser, S.
    Botner, O.
    Bouchta, A.
    Bouhali, O.
    Burgess, T.
    Carius, Staffan
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Castermans, T.
    Chirkin, D.
    Conrad, J.
    Cooley, J.
    Cowen, D. F.
    Davour, A.
    de Clercq, C.
    DeYoung, T.
    Desiati, P.
    Dewulf, J. -P
    Dickinson, E.
    Ekström, P.
    Engel, R.
    Evenson, P.
    Feser, T.
    Gaisser, T. K.
    Ganugapati, R.
    Gaug, M.
    Geenen, H.
    Gerhardt, L.
    Goldschmidt, A.
    Hallgren, A.
    Halzen, F.
    Hanson, K.
    Hardtke, R.
    Hauschildt, T.
    Hellwig, M.
    Herquet, P.
    Hill, G. C.
    Hinton, J. A.
    Hubert, D.
    Hughey, B.
    Hulth, P. O.
    Hultqvist, K.
    Hundertmark, S.
    Jacobsen, J.
    Karle, A.
    Kim, J.
    Köpke, L.
    Kowalski, M.
    Kuehn, K.
    Lamoureux, J. I.
    Leich, H.
    Leuthold, M.
    Lindahl, P.
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Liubarsky, I.
    Lloyd-Evans, J.
    Madsen, J.
    Mandli, K.
    Marciniewski, P.
    Matis, H. S.
    McParland, C. P.
    Messarius, T.
    Miller, T. C.
    Minaeva, Y.
    Miočinović, P.
    Mock, P. C.
    Morse, R.
    Nahnhauer, R.
    Neunhöffer, T.
    Niessen, P.
    Nygren, D. R.
    Ögelman, H.
    Olbrechts, P.
    Pérez de los Heros, C.
    Pohl, A. C.
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Porrata, R.
    Price, P. B.
    Przybylski, G. T.
    Rawlins, K.
    Resconi, E.
    Rhode, W.
    Ribordy, M.
    Richter, S.
    Rochester, K.
    Rodríguez Martino, J.
    Ross, D.
    Sander, H. -G
    Schmidt, T.
    Schinarakis, K.
    Schlenstedt, S.
    Schneider, D.
    Schwarz, R.
    Silvestri, A.
    Solarz, M.
    Spiczak, G. M.
    Spiering, C.
    Stamatikos, M.
    Stanev, T.
    Steele, D.
    Steffen, P.
    Stokstad, R. G.
    Sulanke, K. -H
    Taboada, I.
    Tilav, S.
    Walck, C.
    Wagner, W.
    Wang, Y. -R
    Watson, A. A.
    Wiebusch, C. H.
    Wiedemann, C.
    Wischnewski, R.
    Wissing, H.
    Woschnagg, K.
    Wu, W.
    Yodh, G.
    Young, S.
    Measurement of the cosmic ray composition at the knee with the SPASE-2/AMANDA-B10 detectors2004Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 21, nr 6, s. 565-581Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The mass composition of high-energy cosmic rays at energies above 1015 eV can provide crucial information for the understanding of their origin. Air showers were measured simultaneously with the SPASE-2 air shower array and the AMANDA-B10 Cherenkov telescope at the South Pole. This combination has the advantage to sample almost all high-energy shower muons and is thus a new approach to the determination of the cosmic ray composition. The change in the cosmic ray mass composition was measured versus existing data from direct measurements at low energies. Our data show an increase of the mean log atomic mass 〈lnA〉 by about 0.8 between 500 TeV and 5 PeV. This trend of an increasing mass through the "knee" region is robust against a variety of systematic effects. © 2004 Elsevier B.V. All rights reserved.

  • 13. Ahrens, J.
    et al.
    Bai, X.
    Barouch, G.
    Barwick, S. W.
    Bay, R. C.
    Becka, T.
    Becker, K. -H
    Bertrand, D.
    Biron, A.
    Booth, J.
    Botner, O.
    Bouchta, A.
    Boyce, M. M.
    Carius, Staffan
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Chen, A.
    Chirkin, D.
    Conrad, J.
    Cooley, J.
    Costa, C. G. S.
    Cowen, D. F.
    Dalberg, E.
    DeYoung, T.
    Desiati, P.
    Dewulf, J. -P
    Doksus, P.
    Edsjö, J.
    Ekström, P.
    Feser, T.
    Gaug, M.
    Goldschmidt, A.
    Hallgren, A.
    Halzen, F.
    Hanson, K.
    Hardtke, R.
    Hellwig, M.
    Heukenkamp, H.
    Hill, G. C.
    Hulth, P. O.
    Hundertmark, S.
    Jacobsen, J.
    Karle, A.
    Kim, J.
    Koci, B.
    Köpke, L.
    Kowalski, M.
    Lamoureux, J. I.
    Leich, H.
    Leuthold, M.
    Lindahl, P.
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Liubarsky, I.
    Loaiza, P.
    Lowder, D. M.
    Madsen, J.
    Marciniewski, P.
    Matis, H. S.
    Miller, T. C.
    Minaeva, Y.
    Miočinović, P.
    Mock, P. C.
    Morse, R.
    Neunhöffer, T.
    Niessen, P.
    Nygren, D. R.
    Ogelman, H.
    Pérez de los Heros, C.
    Porrata, R.
    Price, P. B.
    Rawlins, K.
    Reed, C.
    Rhode, W.
    Richter, S.
    Rodríguez Martino, J.
    Romenesko, P.
    Ross, D.
    Sander, H. -G
    Schmidt, T.
    Schneider, D.
    Schwarz, R.
    Silvestri, A.
    Solarz, M.
    Spiczak, G. M.
    Spiering, C.
    Starinsky, N.
    Steele, D.
    Steffen, P.
    Stokstad, R. G.
    Streicher, O.
    Sudhoff, P.
    Taboada, I.
    Thollander, L.
    Thon, T.
    Tilav, S.
    Vander Donckt, M.
    Walck, C.
    Weinheimer, C.
    Wiebusch, C. H.
    Wischnewski, R.
    Wissing, H.
    Woschnagg, K.
    Wu, W.
    Yodh, G.
    Young, S.
    Search for supernova neutrino bursts with the AMANDA detector2001Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 16, nr 4, s. 345-359Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The core collapse of a massive star in the Milky Way will produce a neutrino burst, intense enough to be detected by existing underground detectors. The AMANDA neutrino telescope located deep in the South Pole ice can detect MeV neutrinos by a collective rate increase in all photo-multipliers on top of dark noise. The main source of light comes from positrons produced in the CC reaction of anti-electron neutrinos on free protons ve + p → e+ + n. This paper describes the first supernova search performed on the full sets of data taken during 1997 and 1998 (215 days of live time) with 302 of the detector's optical modules. No candidate events resulted from this search. The performance of the detector is calculated, yielding a 70% coverage of the galaxy with one background fake per year with 90% efficiency for the detector configuration under study. An upper limit at the 90% c.l. on the rate of stellar collapses in the Milky Way is derived, yielding 4.3 events per year. A trigger algorithm is presented and its performance estimated. Possible improvements of the detector hardware are reviewed.

  • 14. AMANDA Collaboration, -
    et al.
    Pohl, Arvid
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Flux limits on ultra high energy neutrinos with AMANDA-B102005Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 22, nr 5-6, s. 339-353Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Data taken during 1997 with the AMANDA-B10 detector are searched for a diffuse flux of neutrinos of all flavors with energies above 10(16) eV. At these energies the Earth is opaque to neutrinos, and thus neutrino induced events are concentrated at the horizon. The background are large muon bundles from down-going atmospheric air shower events. No excess events above the background expectation are observed and a neutrino flux following E-2, with an equal mix of all flavors, is limited to E(2)Phi(10(15) eV < E < 3 x 10(18) eV) less than or equal to 0.99 x 10(-6) GeV cm(-2) s(-1) sr(-1) at 90% confidence level. This is the most restrictive experimental bound placed by any neutrino detector at these energies. Bounds to specific extraterrestrial neutrino flux predictions are also presented. 

  • 15. AMANDA Collaboration, -
    et al.
    Pohl, Arvid
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Limits to the muon flux from neutralino annihilations at the Center of the Earth with AMANDA2006Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 26, nr 2, s. 129-139Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A search has been performed for nearly vertically upgoing neutrino-induced muons with the Antarctic Muon And Neutrino DetectorArray (AMANDA), using data taken over the three year period 1997–99. No excess above the expected atmospheric neutrino backgroundhas been found. Upper limits at 90% confidence level have been set on the annihilation rate of neutralinos at the center ofthe Earth, as well as on the muon flux at AMANDA induced by neutrinos created by the annihilation products.

  • 16. AMANDA Collaboration, -
    et al.
    Pohl, Arvid
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Limits to the muon flux from neutralino annihilations in the Sun with the AMANDA detector2006Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 24, nr 6, s. 459-466Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A search for an excess of muon-neutrinos from neutralino annihilations in the Sun has been performed with the AMANDA-II neutrino detector using data collected in 143.7 days of live-time in 2001. No excess over the expected atmospheric neutrino background has been observed. An upper limit at 90% confidence level has been obtained on the annihilation rate of captured neutralinos in the Sun, as well as the corresponding muon flux limit at the Earth, both as functions of the neutralino mass in the range 100-5000 GeV. 

  • 17. Ambrosio, M
    et al.
    Antolini, R
    Auriemma, G
    Bakari, D
    Baldini, A
    Barbarino, G C
    Barish, B C
    Battistoni, G
    Becherini, Yvonne
    Università di Bologna, Italy ; INFN, Italy.
    Bellotti, R
    Bemporad, C
    Bernardini, P
    Bilokon, H
    Bloise, C
    Bower, C
    Brigida, M
    Bussino, S
    Cafagna, F
    Calicchio, M
    Campana, D
    Carboni, M
    Caruso, R
    Cecchini, S
    Cei, F
    Chiarella, V
    Choudhary, B C
    Coutu, S
    Cozzi, M
    De Cataldo, G
    Dekhissi, H
    De Marzo, C
    De Mitri, I
    Derkaoui, J
    De Vincenzi, M
    Di Credico, A
    Erriquez, O
    Favuzzi, C
    Forti, C
    Fusco, P
    Giacomelli, G
    Giannini, G
    Giglietto, N
    Giorgini, M
    Grassi, M
    Grillo, A
    Guarino, F
    Gustavino, C
    Habig, A
    Hanson, K
    Heinz, R
    Iarocci, E
    Katsavounidis, E
    Katsavounidis, I
    Kearns, E
    Kim, H
    Kyriazopoulou, S
    Lamanna, E
    Lane, C
    Levin, D S
    Lipari, P
    Longley, N P
    Longo, M J
    Loparco, F
    Maaroufi, F
    Mancarella, G
    Mandrioli, G
    Margiotta, A
    Marini, A
    Martello, D
    Marzari-Chiesa, A
    Mazziotta, M N
    Michael, D G
    Monacelli, P
    Montaruli, T
    Monteno, M
    Mufson, S
    Musser, J
    Nicolo, D
    Nolty, R
    Orth, C
    Osteria, G
    Palamara, O
    Patera, V
    Patrizii, L
    Pazzi, R
    Peck, C W
    Perrone, L
    Petrera, S
    Pistilli, P
    Popa, V
    Raino, A
    Reynoldson, J
    Ronga, F
    Rrhioua, A
    Satriano, C
    Scapparone, E
    Scholberg, K
    Sciubba, A
    Serra, P
    Sioli, M
    Sirri, G
    Sitta, M
    Spinelli, P
    Spinetti, M
    Spurio, M
    Steinberg, R
    Stone, J L
    Sulak, L R
    Surdo, A
    Tarle, G
    Togo, V
    Vakili, M
    Walter, C W
    Webb, R
    Search for cosmic ray sources using muons detected by the MACRO experiment2003Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 18, nr 6, s. 615-627Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The MACRO underground detector at Gran Sasso Laboratory recorded 60 million secondary cosmic ray muons from February 1989 until December 2000. Different techniques were used to analyze this sample in search for density excesses from astrophysical point-like sources. No evidence for DC excesses for any source in an all-sky survey is reported. In addition, searches for muon excess correlated with the known binary periods of Cygnus X-3 and Hercules X-1, and searches for statistically significant bursting episodes from known gamma-ray sources are also proved negative. (C) 2002 Elsevier Science B.V. All rights reserved.

  • 18. Ambrosio, M
    et al.
    Antolini, R
    Auriemma, G
    Bakari, D
    Baldini, A
    Barbarino, G C
    Barish, B C
    Battistoni, G
    Becherini, Yvonne
    Università di Bologna, Italy ; INFN, Italy.
    Bellotti, R
    Bemporad, C
    Bernardini, P
    Bilokon, H
    Bloise, C
    Bower, C
    Brigida, M
    Bussino, S
    Cafagna, F
    Calicchio, M
    Campana, D
    Carboni, M
    Caruso, R
    Cecchini, S
    Cei, F
    Chiarella, V
    Choudhary, B C
    Coutu, S
    Cozzi, M
    De Cataldo, G
    Dekhissi, H
    De Marzo, C
    De Mitri, I
    Derkaoui, J
    De Vincenzi, M
    Di Credico, A
    Erriquez, O
    Favuzzi, C
    Forti, C
    Fusco, P
    Giacomelli, G
    Giannini, G
    Giglietto, N
    Giorgini, M
    Grassi, M
    Grillo, A
    Guarino, F
    Gustavino, C
    Habig, A
    Hanson, K
    Heinz, R
    Iarocci, E
    Katsavounidis, E
    Katsavounidis, I
    Kearns, E
    Kim, H
    Kyriazopoulou, S
    Lamanna, E
    Lane, C
    Levin, D S
    Lipari, P
    Longley, N P
    Longo, M J
    Loparco, F
    Maaroufi, F
    Mancarella, G
    Mandrioli, G
    Margiotta, A
    Marini, A
    Martello, D
    Marzari-Chiesa, A
    Mazziotta, M N
    Michael, D G
    Monacelli, P
    Montaruli, T
    Monteno, M
    Mufson, S
    Musser, J
    Nicolo, D
    Nolty, R
    Orth, C
    Osteria, G
    Palamara, O
    Patera, V
    Patrizii, L
    Pazzi, R
    Peck, C W
    Perrone, L
    Petrera, S
    Pistilli, P
    Popa, V
    Raino, A
    Reynoldson, J
    Ronga, F
    Rrhioua, A
    Satriano, C
    Scapparone, E
    Scholberg, K
    Sciubba, A
    Serra, P
    Sioli, M
    Sirri, G
    Sitta, M
    Spinelli, P
    Spinetti, M
    Spurio, M
    Steinberg, R
    Stone, J L
    Sulak, L R
    Surdo, A
    Tarle, G
    Togo, V
    Vakili, M
    Walter, C W
    Webb, R
    Search for diffuse neutrino flux from astrophysical sources with MACRO2003Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 19, nr 1, s. 1-13Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Many galactic and extragalactic astrophysical sources are currently considered promising candidates as high-energy neutrino emitters. Astrophysical neutrinos can be detected as upward-going muons produced in charged-current interactions with the medium surrounding the detector. The expected neutrino fluxes from various models start to dominate on the atmospheric neutrino background at neutrino energies above some tens of TeV. We present the results of a search for an excess of high-energy upward-going muons among the sample of data collected by MACRO during similar to5.8 years of effective running time. No significant evidence for this signal was found. As a consequence, an upper limit on the flux of upward-going muons from high-energy neutrinos was set at the level of 1.7 x 10(-14) cm(-2) s(-1) sr(-1). The corresponding upper limit for the diffuse neutrino flux was evaluated assuming a neutrino power law spectrum. Our result was compared with theoretical predictions and upper limits from other experiments. (C) 2002 Elsevier Science B.V. All rights reserved.

  • 19.
    Ambrosio, M
    et al.
    Università di Napoli, Italy ; INFN, Italy.
    Antolini, R
    INFN, Italy.
    Auriemma, G
    Università di Roma “La Sapienza”, Italy ; INFN, Italy.
    Bakari, D
    Università di Bologna, Italy ; INFN, Italy ; University Mohamed I, Morocco.
    Baldini, A
    Università di Pisa, Italy ; INFN, Italy.
    Barbarino, G C
    Università di Napoli, Italy ; INFN, Italy.
    Barish, B C
    California Institute of Technology, USA.
    Battistoni, G
    INFN, Italy.
    Becherini, Yvonne
    Università di Bologna, Italy ; INFN, Italy.
    Bellotti, R
    Università di Bari, Italy ; INFN, Italy.
    Bemporad, C
    Bernardini, P
    Bilokon, H
    Bloise, C
    Bower, C
    Brigida, M
    Bussino, S
    Cafagna, F
    Calicchio, M
    Campana, D
    Carboni, M
    Caruso, R
    Cecchini, S
    Cei, F
    Chiarella, V
    Choudhary, B C
    Coutu, S
    De Cataldo, G
    Dekhissi, H
    De Marzo, C
    De Mitri, I
    Derkaoui, J
    De Vincenzi, M
    DiCredico, A
    Erriquez, O
    Favuzzi, C
    Forti, C
    Fusco, P
    Giacomelli, G
    Giannini, G
    Giglietto, N
    Giorgini, M
    Grassi, M
    Grillo, A
    Guarino, F
    Gustavino, C
    Habig, A
    Heinz, R
    Iarocci, E
    Katsavounidis, E
    Katsavounidis, I
    Kearns, E
    Kim, H
    Kyriazopoulou, S
    Lamanna, E
    Lane, C
    Levin, D S
    Lipari, P
    Longley, N P
    Longo, M J
    Loparco, F
    Maaroufi, F
    Mancarella, G
    Mandrioli, G
    Manzoor, S
    Margiotta, A
    Marini, A
    Martello, D
    Marzari-Chiesa, A
    Mazziotta, M N
    Michael, D G
    Monacelli, P
    Montaruli, T
    Monteno, M
    Mufson, S
    Musser, J
    Nicolo, D
    Nolty, R
    Orth, C
    Osteria, G
    Palamara, O
    Patera, V
    Patrizii, L
    Pazzi, R
    Peck, C W
    Perrone, L
    Petrera, S
    Popa, V
    Reynoldson, J
    Ronga, F
    Rrhioua, A
    Satriano, C
    Scapparone, E
    Scholberg, K
    Sciubba, A
    Serra, P
    Sioli, M
    Sirri, G
    Sitta, M
    Spinelli, P
    Spinetti, M
    Spurio, M
    Steinberg, R
    Stone, J L
    Sulak, L R
    Surdo, A
    Tarle, G
    Togo, V
    Vakili, M
    Walter, C W
    Webb, R
    A combined analysis technique for the search for fast magnetic monopoles with the MACRO detector2002Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 18, nr 1, s. 27-41Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We describe a search method for fast moving (beta = v/c > 5 x 10(-3)) magnetic monopoles using simultaneously the scintillator, streamer tube and track-etch subdetectors of the MACRO apparatus. The first two subdetectors are used primarily for the identification of candidates while the track-etch one is used as the final tool for their rejection or confirmation. Using this technique, a first sample of more than two-years of data has been analyzed without any evidence of a magnetic monopole. We set a 90% CL upper limit to the local monopole flux of 1.5 x 10(-15) cm(-2) s(-1) sr(-1) in the velocity range 5 x 10(-3) less than or equal to beta less than or equal to 0.99 and for nucleon decay catalysis cross-section smaller than similar to1 mb (C) 2002 Elsevier Science B.V. All rights reserved.

  • 20. Ambrosio, M
    et al.
    Antolini, R
    Baldini, A
    Barbarino, G C
    Barish, B C
    Battistoni, G
    Becherini, Yvonne
    Università di Bologna, Italy ; INFN, Italy.
    Bellotti, R
    Bemporad, C
    Bernardini, P
    Bilokon, H
    Bower, C
    Brigida, M
    Bussino, S
    Cafagna, F
    Calicchio, M
    Campana, D
    Carboni, M
    Caruso, R
    Cecchini, S
    Cei, F
    Chiarella, V
    Chiarusi, T
    Choudhary, B C
    Coutu, S
    Cozzi, M
    De Cataldo, G
    Dekhissi, H
    De Marzo, C
    De Mitri, I
    Derkaoui, J
    De Vincenzi, M
    Di Credico, A
    Erriquez, O
    Favuzzi, C
    Forti, C
    Fusco, P
    Giacomelli, G
    Giannini, G
    Giglietto, N
    Giorgini, M
    Grassi, M
    Grillo, A
    Gustavino, C
    Habig, A
    Hanson, K
    Heinz, R
    Katsavounidis, E
    Katsavounidis, I
    Kearns, E
    Kim, H
    Kumar, A
    Kyriazopoulou, S
    Lamanna, E
    Lane, C
    Levin, D S
    Lipari, P
    Longley, N P
    Longo, M J
    Loparco, F
    Maaroufi, F
    Mancarella, G
    Mandrioli, G
    Manzoor, S
    Margiotta, A
    Marini, A
    Martello, D
    Marzari-Chiesa, A
    Mazziotta, M N
    Michael, D G
    Monacelli, P
    Montaruli, T
    Monteno, M
    Mufson, S
    Musser, J
    Nicolo, D
    Nolty, R
    Orth, C
    Osteria, G
    Palamara, O
    Patrizii, L
    Pazzi, R
    Peck, C W
    Perrone, L
    Petrera, S
    Popa, V
    Raino, A
    Reynoldson, J
    Ronga, F
    Satriano, C
    Scapparone, E
    Scholberg, K
    Sioli, M
    Sirri, G
    Sitta, M S
    Spinelli, P
    Spinetti, M
    Spurio, M
    Steinberg, R
    Stone, J L
    Sulak, L R
    Surdo, A
    Tarle, G
    Togo, V
    Vakili, M
    Walter, C W
    Webb, R
    Moon and Sun shadowing effect in the MACRO detector2003Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 20, nr 2, s. 145-156Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Using data collected by the MACRO experiment from 1989 to the end of its operations in 2000, we have studied in the underground muon flux the shadowing. effects due to both the Moon and the Sun. We have observed the shadow cast by the Moon at its apparent position with a significance of 6.5sigma. The Moon shadowing effect has been used to verify the pointing capability of the detector and to determine the instrument resolution for the search of muon excesses from any direction of the celestial sphere. The dependence of the effect on the geomagnetic field is clearly shown by splitting the data sample in day and night observations. The Sun shadow, observed with a significance of 4.6sigma is displaced by about 0.6degrees from its apparent position. In this case however the explanation resides in the configuration of the Solar and Interplanetary Magnetic Fields, which affect the propagation of cosmic ray particles between the Sun, and the Earth. The displacement of the Sun shadow with respect to the real Sun position has been used to establish an upper limit on the antimatter flux in cosmic rays of about 48% at 68% c.l. and primary energies of about 20 TeV. (C) 2003 Elsevier B.V. All rights reserved.

  • 21. Ambrosio, M
    et al.
    Antolini, R
    Baldini, A
    Barbarino, G C
    Barish, B C
    Battistoni, G
    Becherini, Yvonne
    Università di Bologna, Italy ; INFN, Italy.
    Bellotti, R
    Bemporad, C
    Bernardini, P
    Bilokon, H
    Bower, C
    Brigida, M
    Bussino, S
    Cafagna, F
    Calicchio, M
    Campana, D
    Carboni, M
    Caruso, R
    Cecchini, S
    Cei, F
    Chiarella, V
    Choudhary, B C
    Coutu, S
    Cozzi, M
    De Cataldo, G
    Dekhissi, H
    De Marzo, C
    De Mitri, I
    Derkaoui, J
    De Vincenzi, M
    Di Credico, A
    Erriquez, O
    Favuzzi, C
    Forti, C
    Fusco, P
    Giacomelli, G
    Giannini, G
    Giglietto, N
    Giorgini, M
    Grassi, M
    Grillo, H
    Guarino, F
    Gustavino, C
    Habig, A
    Hanson, K
    Heinz, R
    Iarocci, E
    Katsavounidis, E
    Katsavounidis, I
    Kearns, E
    Kim, H
    Kyriazopoulou, S
    Lamanna, E
    Lane, C
    Levin, D S
    Lipari, P
    Longley, N P
    Longo, M J
    Loparco, F
    Mancarella, G
    Mandrioli, G
    Margiotta, A
    Marini, A
    Martello, D
    Marzari-Chiesa, A
    Mazziotta, M N
    Michael, D G
    Monacelli, P
    Montaruli, T
    Monteno, M
    Mufson, S
    Musser, J
    Nicolo, D
    Nolty, R
    Orth, C
    Osteria, G
    Palamara, O
    Patera, V
    Patrizii, L
    Pazzi, R
    Peck, C W
    Perrone, L
    Petrera, S
    Pistilli, P
    Popa, V
    Raino, A
    Reynoldson, J
    Ronga, F
    Satraino, C
    Scapparone, E
    Scholberg, K
    Sciubba, A
    Serra, P
    Sioli, M
    Sirri, G
    Sitta, M
    Spinelli, P
    Spinetti, M
    Spurio, M
    Steinberg, R
    Stone, J L
    Sulak, L R
    Surdo, A
    Tarle, G
    Vakili, M
    Walter, C W
    Webb, R
    Measurement of the residual energy of muons in the Gran Sasso underground laboratories2003Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 19, nr 3, s. 313-328Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The MACRO detector was located in the Hall B of the Gran Sasso underground laboratories under an average rock overburden of 3700 hg/cm(2). A transition radiation detector composed of three identical modules, covering a total horizontal area of 36 m(2), was installed inside the empty upper part of the detector in order to measure the residual energy of muons. This paper presents the measurement of the residual energy of single and double muons crossing the apparatus. Our data show that double muons are more energetic than single ones. This measurement is performed over a standard rock depth range from 3000 to 6500 hg/cm(2). (C) 2002 Elsevier Science B.V. All rights reserved.

  • 22. Andres, E.
    et al.
    Askebjer, P.
    Barwick, S. W.
    Bay, R.
    Bergström, L.
    Biron, A.
    Booth, J.
    Bouchta, A.
    Carius, Staffan
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Carlson, M.
    Cowen, D.
    Dalberg, E.
    Deyoung, T.
    Ekström, P.
    Erlandson, B.
    Goobar, A.
    Gray, L.
    Hallgren, A.
    Halzen, F.
    Hardtke, R.
    Hart, S.
    He, Y.
    Heukenkamp, H.
    Hill, G.
    Hulth, P. O.
    Hundertmark, S.
    Jacobsen, J.
    Jones, A.
    Kandhadai, V.
    Karle, A.
    Koci, B.
    Lindahl, P.
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Liubarsky, I.
    Leuthold, M.
    Lowder, D. M.
    Marciniewski, P.
    Mikolajski, T.
    Miller, T.
    Miocinovic, P.
    Mock, P.
    Morse, R.
    Niessen, P.
    Pérez De Los Heros, C.
    Porrata, R.
    Potter, D.
    Price, P. B.
    Przybylski, G.
    Richards, A.
    Richter, S.
    Romenesko, P.
    Rubinstein, H.
    Schneider, E.
    Schmidt, T.
    Schwarz, R.
    Solarz, M.
    Spiczak, G. M.
    Spiering, C.
    Streicher, O.
    Sun, Q.
    Thollander, L.
    Thon, T.
    Tilav, S.
    Walck, C.
    Wiebusch, C.
    Wischnewski, R.
    Woschnagg, K.
    Yodh, G.
    The AMANDA neutrino telescope: Principle of operation and first results2000Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 13, nr 1, s. 1-20Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    AMANDA is a high-energy neutrino telescope presently under construction at the geographical South Pole. In the Antarctic summer 1995/96, an array of 80 optical modules (OMs) arranged on 4 strings (AMANDA-B4) was deployed at depths between 1.5 and 2 km. In this paper we describe the design and performance of the AMANDA-B4 prototype, based on data collected between February and November 1996. Monte Carlo simulations of the detector response to down-going atmospheric muon tracks show that the global behavior of the detector is understood. We describe the data analysis method and present first results on atmospheric muon reconstruction and separation of neutrino candidates. The AMANDA array was upgraded with 216 OMs on 6 new strings in 1996/97 (AMANDA-B10), and 122 additional OMs on 3 strings in 1997/98.

  • 23.
    Becherini, Yvonne
    et al.
    Università di Bologna, Italy ; INFN, Italy.
    Cecchini, S
    Chiarusi, T
    Cozzi, M
    Dekhissi, H
    Derkaoui, J
    Esposito, L S
    Giacomelli, G
    Giorgini, M
    Giglietto, N
    Maaroufi, F
    Mandrioli, G
    Margiotta, A
    Manzoor, S
    Patrizii, L
    Popa, V
    Sioli, M
    Sirri, G
    Spurio, M
    Togo, V
    Time correlations of high energy muons in an underground detector2005Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 23, nr 3, s. 341-348Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present the result of a search for correlations in the arrival times of high energy muons collected from 1995 till 2000 with the streamer tube system of the complete MACRO detector at the underground Gran Sasso Lab. Large samples of single muons (8.6 million), double muons (0.46 million) and multiple muons with multiplicities from 3 to 6 (0.08 million) were selected. These samples were used to search for time correlations of cosmic ray particles coming from the whole upper hemisphere or from selected space cones. The results of our analyses confirm with high statistics a random arrival time distribution of high energy cosmic rays. (c) 2005 Elsevier B.V. All rights reserved.

  • 24.
    Becherini, Yvonne
    et al.
    Paris Diderot University, France ; École Polytechnique, France.
    Djannati-Atai, A.
    Paris Diderot University, France.
    Marandon, V.
    Paris Diderot University, France.
    Punch, Michael
    Paris Diderot University, France.
    Pita, S.
    Paris Diderot University, France.
    A new analysis strategy for detection of faint gamma-ray sources with Imaging Atmospheric Cherenkov Telescopes2011Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 34, nr 12, s. 858-870Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A new background rejection strategy for gamma-ray astrophysics with stereoscopic Imaging Atmospheric Cherenkov Telescopes (IACT), based on Monte Carlo (MC) simulations and real background data from the H.E.S.S. [High Energy Stereoscopic System, see [1].] experiment, is described. The analysis is based on a multivariate combination of both previously-known and newly-derived discriminant variables using the physical shower properties, as well as its multiple images, for a total of eight variables. Two of these new variables are defined thanks to a new energy evaluation procedure, which is also presented here. The method allows an enhanced sensitivity with the current generation of ground-based Cherenkov telescopes to be achieved, and at the same time its main features of rapidity and flexibility allow an easy generalization to any type of IACT. The robustness against Night Sky Background (NSB) variations of this approach is tested with MC simulated events. The overall consistency of the analysis chain has been checked by comparison of the real gamma-ray signal obtained from H.E.S.S. observations with MC simulations and through reconstruction of known source spectra. Finally, the performance has been evaluated by application to faint H.E.S.S. sources. The gain in sensitivity as compared to the best standard Hillas analysis ranges approximately from 1.2 to 1.8 depending on the source characteristics, which corresponds to an economy in observation time of a factor 1.4 to 3.2. (C) 2011 Elsevier B.V. All rights reserved.

  • 25. Becherini, Yvonne
    et al.
    Margiotta, A
    Sioli, M
    Spurio, M
    A parameterisation of single and multiple muons in the deep water or ice2006Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 25, nr 1, s. 1-13Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Atmospheric muons play an important role in underwater/ice neutrino detectors. In this paper, a parameterisation of the flux of single and multiple muon events, their lateral distribution and of their energy spectrum is presented. The kinematics parameters were modelled starting from a full Monte Carlo simulation of the interaction of primary cosmic rays with atmospheric nuclei; secondary muons reaching the sea level were propagated in the deep water. The parametric formulas are valid for a vertical depth of 1.5-5 km.w.e. and lip to 85 degrees for the zenith angle, and can be used as input for a fast simulation of atmospheric muons in underwater/ice detectors. (c) 2005 Elsevier B.V. All rights reserved.

  • 26. Bernloehr, K.
    et al.
    Barnacka, A.
    Becherini, Yvonne
    Ecole Polytechnique.
    Blanch Bigas, O.
    Carmona, E.
    Colin, P.
    Decerprit, G.
    Di Pierro, F.
    Dubois, F.
    Farnier, C.
    Funk, S.
    Hermann, G.
    Hinton, J. A.
    Humensky, T. B.
    Khelifi, B.
    Kihm, T.
    Komin, N.
    Lenain, J-P
    Maier, G.
    Mazin, D.
    Medina, M. C.
    Moralejo, A.
    Nolan, S. J.
    Ohm, S.
    Wilhelmi, E. de Ona
    Parsons, R. D.
    Arribas, M. Paz
    Pedaletti, G.
    Pita, S.
    Prokoph, Heike
    Rulten, C. B.
    Schwanke, U.
    Shayduk, M.
    Stamatescu, V.
    Vallania, P.
    Vorobiov, S.
    Wischnewski, R.
    Yoshikoshi, T.
    Zech, A.
    Monte Carlo design studies for the Cherenkov Telescope Array2013Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 43, s. 171-188Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Cherenkov Telescopes Array (CTA) is planned as the future instrument for very-high-energy (VHE) gamma-ray astronomy with a wide energy range of four orders of magnitude and an improvement in sensitivity compared to current instruments of about an order of magnitude. Monte Carlo simulations are a crucial tool in the design of CTA. The ultimate goal of these simulations is to find the most cost-effective solution for given physics goals and thus sensitivity goals or to find, for a given cost, the solution best suited for different types of targets with CTA. Apart from uncertain component cost estimates, the main problem in this procedure is the dependence on a huge number of configuration parameters, both in specifications of individual telescope types and in the array layout. This is addressed by simulation of a huge array intended as a superset of many different realistic array layouts, and also by simulation of array subsets for different telescope parameters. Different analysis methods - in use with current installations and extended (or developed specifically) for CTA - are applied to the simulated data sets for deriving the expected sensitivity of CTA. In this paper we describe the current status of this iterative approach to optimize the CTA design and layout. (C) 2012 Elsevier B.V. All rights reserved.

  • 27.
    Borwankar, Chinmay
    et al.
    Bhabha Atom Res Ctr, India.
    Bhatt, Nilay
    Bhabha Atom Res Ctr, India.
    Bhattacharyya, Subir
    Bhabha Atom Res Ctr, India.
    Rannot, R. C.
    Bhabha Atom Res Ctr, India.
    Tickoo, A. K.
    Bhabha Atom Res Ctr, India.
    Koul, R.
    Bhabha Atom Res Ctr, India.
    Thoudam, Satyendra
    Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för fysik och elektroteknik (IFE).
    Simulation studies of MACE-I: Trigger rates and energy thresholds2016Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 84, s. 97-106Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The MACE (Major Atmospheric Cherenkov Experiment) is an upcoming Very High Energy (VHE) gamma-ray telescope, based on imaging atmospheric Cherenkov technique, being installed at Hanle, a high altitude astronomical site in Ladakh, India. Here we present Monte Carlo simulation studies of trigger rates and threshold energies of MACE in the zenith angle range of 0 degrees-60 degrees for on-axis gamma-ray coming from point source and various cosmic ray species. We have simulated the telescope's response to gamma-rays, proton, electron and alpha initiated atmospheric Extensive Air Showers (EAS) in the broad energy range of 5 GeV to 20 TeV. For gamma-rays we consider power law and log parabolic spectra while other particles are simulated with their respective cosmic ray spectrum. Trigger rates and threshold energies are estimated for the trigger configuration of 4 Close Cluster Nearest Neighbour(CCNN) pixels as implemented in MACE hardware, in combination with single channel discriminator threshold ranging from 6-10 photo electrons (pe). We find that MACE can achieve the gamma-ray trigger energy threshold of similar to 17 GeV (4 CCNN, 9 pe) at 0 degrees zenith angle for power law spectrum. The total trigger rate at 0 degrees zenith is expected to be similar to 650 Hz, with protons contributing similar to 80% to it. For the zenith range of 0 degrees-40 degrees we find that the telescope can achieve gamma-gray trigger threshold energies of similar to 22 GeV at 20 degrees zenith angle and similar to 40 GeV at 40 degrees zenith angle. Integral rates are also almost constant for this zenith angle range. At zenith angle of 60 degrees, trigger energy threshold increases to similar to 173 GeV and total integral rate falls down to similar to 305 Hz. (C) 2016 Elsevier B.V. All rights reserved.

  • 28.
    Corstanje, A.
    et al.
    Radboud University Nijmegen, Netherlands.
    Bonardi, A.
    Radboud University Nijmegen, Netherlands.
    Buitink, S.
    Radboud University Nijmegen, Netherlands ; Vrije Universiteit Brussel, Belgium.
    Falcke, H.
    Radboud University Nijmegen, Netherlands ; ASTRON Netherlands Institute for Radio Astronomy, Netherlands ; Nikhef, Sci Pk Amsterdam, NL-1098 XG Amsterdam, Netherlands.;Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany..
    Horandel, J. R.
    Radboud University Nijmegen, Netherlands ;Nikhef, Sci Pk Amsterdam, NL-1098 XG Amsterdam, Netherlands..
    Mitra, R.
    Vrije Univ Brussel, Inst Astrophys, Pleinlaan 2, B-1050 Brussels, Belgium..
    Mulrey, K.
    Vrije Univ Brussel, Inst Astrophys, Pleinlaan 2, B-1050 Brussels, Belgium..
    Nelles, A.
    Radboud University Nijmegen, Netherlands ;Nikhef, Sci Pk Amsterdam, NL-1098 XG Amsterdam, Netherlands.;Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA..
    Rachen, J. P.
    Radboud University Nijmegen, Netherlands.
    Rossetto, L.
    Radboud University Nijmegen, Netherlands.
    Schellart, P.
    Radboud University Nijmegen, Netherlands ;Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA..
    Scholten, O.
    Vrije Univ Brussel, Interuniv Inst High Energy, Pleinlaan 2, B-1050 Brussels, Belgium.;Univ Groningen, POB 72, NL-9700 AB Groningen, Netherlands..
    ter Veen, S.
    Radboud University Nijmegen, Netherlands.
    Thoudam, Satyendra
    Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för fysik och elektroteknik (IFE). Radboud University Nijmegen, Netherlands.
    Trinh, G.
    Univ Groningen, POB 72, NL-9700 AB Groningen, Netherlands..
    Winchen, T.
    Vrije Univ Brussel, Inst Astrophys, Pleinlaan 2, B-1050 Brussels, Belgium..
    The effect of the atmospheric refractive index on the radio signal of extensive air showers2017Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 89, s. 23-29Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    For the interpretation of measurements of radio emission from extensive air showers, an important systematic uncertainty arises from natural variations of the atmospheric refractive index n. At a given altitude, the refractivity N = 10(6) (n - 1) can have relative variations on the order of 10% depending on temperature, humidity, and air pressure. Typical corrections to be applied to N are about 4%. Using CoREAS simulations of radio emission from air showers, we have evaluated the effect of varying N on measurements of the depth of shower maximum X-max. For an observation band of 30-80 MHz, a difference of 4% in refractivity gives rise to a systematic error in the inferred X-max between 3.5 and 11 g/cm(2), for proton showers with zenith angles ranging from 15 to 50 degrees. At higher frequencies, from 120 to 250 MHz, the offset ranges from 10 to 22 g/cm(2). These offsets were found to be proportional to the geometric distance to X-max. We have compared the results to a simple model based on the Cherenkov angle. For the 120-250 MHz band, the model is in qualitative agreement with the simulations. In typical circumstances, we find a slight decrease in X-max compared to the default refractivity treatment in CoREAS. While this is within commonly treated systematic uncertainties, accounting for it explicitly improves the accuracy of X-max measurements. (C) 2017 Elsevier B.V. All rights reserved.

  • 29. Corstanje, A.
    et al.
    Schellart, P.
    Nelles, A.
    Buitink, S.
    Enriquez, J. E.
    Falcke, H.
    Frieswijk, W.
    Hörandel, J. R.
    Krause, M.
    Rachen, J. P.
    Scholten, O.
    ter Veen, S.
    Thoudam, Satyendra
    Radboud University Nijmegen, The Netherlands.
    Trinh, T. N. G.
    van den Akker, M.
    Alexov, A.
    Anderson, J.
    Avruch, I. M.
    Bell, M. E.
    Bentum, M. J.
    Bernardi, G.
    Best, P.
    Bonafede, A.
    Breitling, F.
    Broderick, J.
    Brüggen, M.
    Butcher, H. R.
    Ciardi, B.
    de Gasperin, F.
    de Geus, E.
    de Vos, M.
    Duscha, S.
    Eislöffel, J.
    Engels, D.
    Fallows, R. A.
    Ferrari, C.
    Garrett, M. A.
    Grießmeier, J.
    Gunst, A. W.
    Hamaker, J. P.
    Hoeft, M.
    Horneffer, A.
    Iacobelli, M.
    Juette, E.
    Karastergiou, A.
    Kohler, J.
    Kondratiev, V. I.
    Kuniyoshi, M.
    Kuper, G.
    Maat, P.
    Mann, G.
    McFadden, R.
    McKay-Bukowski, D.
    Mevius, M.
    Munk, H.
    Norden, M. J.
    Orru, E.
    Paas, H.
    Pandey-Pommier, M.
    Pandey, V. N.
    Pizzo, R.
    Polatidis, A. G.
    Reich, W.
    Röttgering, H.
    Scaife, A. M. M.
    Schwarz, D.
    Smirnov, O.
    Stewart, A.
    Steinmetz, M.
    Swinbank, J.
    Tagger, M.
    Tang, Y.
    Tasse, C.
    Toribio, C.
    Vermeulen, R.
    Vocks, C.
    van Weeren, R. J.
    Wijnholds, S. J.
    Wucknitz, O.
    Yatawatta, S.
    Zarka, P.
    The shape of the radio wavefront of extensive air showers as measured with LOFAR2015Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 61, s. 22-31Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Extensive air showers, induced by high energy cosmic rays impinging on the Earth’s atmosphere, produce radio emission that is measured with the LOFAR radio telescope. As the emission comes from a finite distance of a few kilometers, the incident wavefront is non-planar. A spherical, conical or hyperbolic shape of the wavefront has been proposed, but measurements of individual air showers have been inconclusive so far. For a selected high-quality sample of 161 measured extensive air showers, we have reconstructed the wavefront by measuring pulse arrival times to sub-nanosecond precision in 200 to 350 individual antennas. For each measured air shower, we have fitted a conical, spherical, and hyperboloid shape to the arrival times. The fit quality and a likelihood analysis show that a hyperboloid is the best parameterization. Using a non-planar wavefront shape gives an improved angular resolution, when reconstructing the shower arrival direction. Furthermore, a dependence of the wavefront shape on the shower geometry can be seen. This suggests that it will be possible to use a wavefront shape analysis to get an additional handle on the atmospheric depth of the shower maximum, which is sensitive to the mass of the primary particle.

  • 30. IceCube Collaboration, -
    et al.
    Pohl, Arvid
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    First year performance of the IceCube neutrino telescope2006Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 26, nr 3, s. 155-173Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The first sensors of the IceCube neutrino observatory were deployed at the South Pole during the austral summer of 2004-2005 and have been producing data since February 2005. One string of 60 sensors buried in the ice and a surface array of eight ice Cherenkov tanks took data until December 2005 when deployment of the next set of strings and tanks began. We have analyzed these data, demonstrating that the performance of the system meets or exceeds design requirements. Times are determined across the whole array to a relative precision of better than 3 ns, allowing reconstruction of muon tracks and light bursts in the ice, of air-showers in the surface array and of events seen in coincidence by surface and deep-ice detectors separated by up to 2.5 km. 

  • 31. IceCube Collaboration, -
    et al.
    Pohl, Arvid
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes2006Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 26, nr 4-5, s. 282-300Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The sensitivity of a search for sources of TeV neutrinos can be improved by grouping potential sources together into generic classes in a procedure that is known as source stacking. In this paper, we define catalogs of Active Galactic Nuclei (AGN) and use them to perform a source stacking analysis. The grouping of AGN into classes is done in two steps: first, AGN classes are defined, then, sources to be stacked are selected assuming that a potential neutrino flux is linearly correlated with the photon luminosity in a certain energy band (radio, IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino production in AGN, this correlation is motivated by hadronic AGN models, as briefly reviewed in this paper.The source stacking search for neutrinos from generic AGN classes is illustrated using the data collected by the AMANDA-II highenergy neutrino detector during the year 2000. No significant excess for any of the suggested groups was found. (c) 2006 Elsevier B.V. All rights reserved. 

  • 32. Kamae, T. Y.
    et al.
    Andersson, V.
    Arimoto, M.
    Axelsson, M.
    Bettolo, C. M.
    Bjornsson, C. I.
    Bogaert, G.
    Carlson, P.
    Craig, W.
    Ekeberg, T.
    Engdegdrd, O.
    Fukazawa, Y.
    Gunji, S.
    Hjalmarsdotter, L.
    Iwan, B.
    Kanai, Y.
    Kataoka, J.
    Kawai, N.
    Kazejev, J.
    Kiss, M.
    Klamra, W.
    Larsson, S.
    Madejski, G.
    Mizuno, T.
    Ng, J.
    Pearce, M.
    Ryde, F.
    Suhonen, M.
    TaJima, H.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Thurston, T.
    Ueno, M.
    Varneri, G.
    Yamamoto, K.
    Yamashita, Y.
    Ylinen, T.
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Yoshida, H.
    PoGOLite - A high sensitivity balloon-borne soft gamma-ray polarimeter2008Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 30, nr 2, s. 72-84Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We describe a new balloon-borne instrument (PoGOLite) capable of detecting 10% polarisation from 200 mCrab point-like sources between 25 and 80 keV in one 6-h flight. Polarisation measurements in the soft gamma-ray band are expected to provide a powerful probe into high energy emission mechanisms as well as the distribution of magnetic fields, radiation fields and interstellar matter. Synchrotron radiation, inverse Compton scattering and propagation through high magnetic fields are likely to produce high degrees of polarisation in the energy band of the instrument. We demonstrate, through tests at accelerators, with radioactive sources and through computer simulations, that PoGOLite will be able to detect degrees of polarisation as predicted by models for several classes of high energy sources. At present, only exploratory polarisation measurements have been carried out in the soft gamma-ray band. Reduction of the large background produced by cosmic-ray particles while securing a large effective area has been the greatest challenge. PoGOLite uses Compton scattering and photo-absorption in an array of 217 well-type phoswich detector cells made of plastic and BGO scintillators surrounded by a BGO anticoincidence shield and a thick polyethylene neutron shield. The narrow Held of view (FWHM = 1.25 msr, 2.0 deg x 2.0 deg) obtained with detector cells and the use of thick background shields warrant a large effective area for polarisation measurements (similar to 228 cm(2) at E = 40 keV) without sacrificing the signal-to-noise ratio. Simulation studies for an atmospheric overburden of 3-4 g/cm(2) indicate that neutrons and gamma-rays entering the PDC assembly through the shields are dominant backgrounds. Off-line event selection based on recorded phototube waveforms and Compton kinematics reduce the background to that expected for a similar to 100 mCrab source between 25 and 50 keV. A 6-h observation of the Crab pulsar will differentiate between the Polar Cap/Slot Gap, Outer Gap, and Caustic models with greater than 5 sigma significance; and also cleanly identify the Compton reflection component in the Cygnus X-1 hard state. Long-duration flights will measure the dependence of the polarisation across the cyclotron absorption line in Hercules X-1. A scaled-down instrument will be flown as a pathfinder mission from the north of Sweden in 2010. The first science flight is planned to take place shortly thereafter. (C) 2008 Elsevier B.V. All rights reserved.

  • 33.
    Mulrey, K.
    et al.
    Vrije Univ Brussel, Belgium.
    Bonardi, A.
    Radboud Univ Nijmegen, Netherlands.
    Buitink, S.
    Vrije Univ Brussel, Belgium;Radboud Univ Nijmegen, Netherlands.
    Corstanje, A.
    Radboud Univ Nijmegen, Netherlands.
    Falcke, H.
    Radboud Univ Nijmegen, Netherlands;Nikhef, Netherlands;Netherlands Inst Radio Astron ASTRON, Netherlands.
    Hare, B. M.
    Univ Groningen, Netherlands.
    Horandel, J. R.
    Radboud Univ Nijmegen, Netherlands;Nikhef, Netherlands;Vrije Univ Brussel, Belgium.
    Huege, T.
    Vrije Univ Brussel, Belgium;KIT, Germany.
    Mitra, P.
    Vrije Univ Brussel, Belgium.
    Nelles, A.
    DESY, Germany;Humboldt Univ, Germany.
    Rachen, J. P.
    Radboud Univ Nijmegen, Netherlands.
    Rossetto, L.
    Radboud Univ Nijmegen, Netherlands.
    Schellart, P.
    Radboud Univ Nijmegen, Netherlands;Princeton Univ, USA.
    Scholtene, O.
    Univ Groningen, Netherlands;Vrije Univ Brussel, Belgium.
    ter Veen, S.
    Radboud Univ Nijmegen, Netherlands;Netherlands Inst Radio Astron ASTRON, Netherlands.
    Thoudam, Satyendra
    Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för fysik och elektroteknik (IFE). Radboud Univ Nijmegen, Netherlands.
    Trinh, T. N. G.
    Univ Groningen, Netherlands.
    Winchen, T.
    Vrije Univ Brussel, Belgium.
    Calibration of the LOFAR low-band antennas using the Galaxy and a model of the signal chain2019Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 111, s. 1-11Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The LOw-Frequency ARray (LOFAR) is used to make precise measurements of radio emission from extensive air showers, yielding information about the primary cosmic ray. Interpreting the measured data requires an absolute and frequency-dependent calibration of the LOFAR system response. This is particularly important for spectral analyses, because the shape of the detected signal holds information about the shower development. We revisit the calibration of the LOFAR antennas in the range of 30-80 MHz. Using the Galactic emission and a detailed model of the LOFAR signal chain, we find an improved calibration that provides an absolute energy scale and allows for the study of frequency dependent features in measured signals. With the new calibration, systematic uncertainties of 13% are reached, and comparisons of the spectral shape of calibrated data with simulations show promising agreement. (C) 2019 Elsevier B.V. All rights reserved.

  • 34. Nelles, A.
    et al.
    Schellart, P.
    Buitink, S.
    Corstanje, A.
    de Vries, K. D.
    Enriquez, J. E.
    Falcke, H.
    Frieswijk, W.
    Hörandel, J. R.
    Scholten, O.
    ter Veen, S.
    Thoudam, Satyendra
    Radboud University Nijmegen, The Netherlands.
    van den Akker, M.
    Anderson, J.
    Asgekar, A.
    Bell, M. E.
    Bentum, M. J.
    Bernardi, G.
    Best, P.
    Bregman, J.
    Breitling, F.
    Broderick, J.
    Brouw, W. N.
    Brüggen, M.
    Butcher, H. R.
    Ciardi, B.
    Deller, A.
    Duscha, S.
    Eislöffel, J.
    Fallows, R. A.
    Garrett, M. A.
    Gunst, A. W.
    Hassall, T. E.
    Heald, G.
    Horneffer, A.
    Iacobelli, M.
    Juette, E.
    Karastergiou, A.
    Kondratiev, V. I.
    Kramer, M.
    Kuniyoshi, M.
    Kuper, G.
    Maat, P.
    Mann, G.
    Mevius, M.
    Norden, M. J.
    Paas, H.
    Pandey-Pommier, M.
    Pietka, G.
    Pizzo, R.
    Polatidis, A. G.
    Reich, W.
    Röttgering, H.
    Scaife, A. M. M.
    Schwarz, D.
    Smirnov, O.
    Stappers, B. W.
    Steinmetz, M.
    Stewart, A.
    Tagger, M.
    Tang, Y.
    Tasse, C.
    Vermeulen, R.
    Vocks, C.
    van Weeren, R. J.
    Wijnholds, S. J.
    Wucknitz, O.
    Yatawatta, S.
    Zarka, P.
    Measuring a Cherenkov ring in the radio emission from air showers at 110-190 MHz with LOFAR2015Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 65, s. 11-21Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Measuring radio emission from air showers offers a novel way to determine properties of the primary cosmic rays such as their mass and energy. Theory predicts that relativistic time compression effects lead to a ring of amplified emission which starts to dominate the emission pattern for frequencies above ∼100∼100 MHz. In this article we present the first detailed measurements of this structure. Ring structures in the radio emission of air showers are measured with the LOFAR radio telescope in the frequency range of 110–190 MHz. These data are well described by CoREAS simulations. They clearly confirm the importance of including the index of refraction of air as a function of height. Furthermore, the presence of the Cherenkov ring offers the possibility for a geometrical measurement of the depth of shower maximum, which in turn depends on the mass of the primary particle.

  • 35.
    Thoudam, Satyendra
    Bhabha Atomic Research Centre, India.
    High energy diffuse gamma-ray emission of the galactic disk and galactic cosmic-ray spectra2006Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 25, nr 5, s. 328-341Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Observations of diffuse Galactic γ-ray spectrum by the EGRET instrument reveal an excess above ∼1 GeV over the expected γ-ray spectrum calculated under the assumption that the locally observed cosmic-ray (CR) spectra represent the galactic CR spectra. Assuming that Galactic CRs of energy below ∼100 TeV are accelerated by supernova remnant (SNR) shock waves and that the shock compression ratio is SNR age dependent, the average source injection spectra from an ensemble of SNRs is calculated both in the inner (330° < l < 30°) and outer (30° < l < 330°) regions of the galaxy. The calculation considers the SNR age distribution in the galaxy. Injecting these spectra in the galaxy and using a 3-D convection–diffusion equation, the CR electrons and protons spectra in the two galactic regions are obtained and their spectra in the galactic disk are found to be flatter than the observed CR spectra. The diffuse gamma-ray spectrum produced by the interaction of these galactic CRs with the ISM and ISRFs is compared with the experimental data in both the galactic regions. Furthermore, the steepening of the observed local CR spectra from the galactic disk CR spectra are discussed by propagating local CRs having a source spectrum derived using local SNR age distribution (SNRs located within 1.5 kpc from the Sun), for a diffusion coefficient D0 ∼ 0.3 × 1027 cm2 s−1 in the local region which is much less than the typical value in the galaxy D0 ∼ (1–10) × 1028 cm2 s−1. The results obtained in this paper support the SNR origin of galactic CRs.

  • 36.
    Thoudam, Satyendra
    et al.
    Radboud University Nijmegen, The Netherlands.
    Buitink, S.
    Vrije Universiteit Brussel.
    Corstanje, A.
    Radboud University Nijmegen, The Netherlands.
    Enriquez, J. E.
    Radboud University Nijmegen, The Netherlands.
    Falcke, H.
    Radboud University Nijmegen, The Netherlands ; NIKHEF, Science Park Amsterdam, The Netherlands ; Netherlands Institute of Radio Astronomy (ASTRON), The Netherlands .
    Hörandel, J. R.
    Radboud University Nijmegen, The Netherlands ; NIKHEF, Science Park Amsterdam, The Netherlands.
    Nelles, A.
    Radboud University Nijmegen, The Netherlands ; University of California Irvine, USA.
    Rachen, J. P.
    Radboud University Nijmegen, The Netherlands.
    Rossetto, L.
    Radboud University Nijmegen, The Netherlands.
    Schellart, P.
    Radboud University Nijmegen, The Netherlands.
    Scholten, O.
    University Groningen, The Netherlands.
    ter Veen, S.
    Radboud University Nijmegen, The Netherlands.
    Trinh, T. N. G.
    University Groningen, The Netherlands.
    van Kessel, L.
    Radboud University Nijmegen, The Netherlands.
    Measurement of the cosmic-ray energy spectrum above 1016 eV with the LOFAR Radboud Air Shower Array2016Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 73, s. 34-43Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The energy reconstruction of extensive air showers measured with the LOFAR Radboud Air Shower Array (LORA) is presented in detail. LORA is a particle detector array located in the center of the LOFAR radio telescope in the Netherlands. The aim of this work is to provide an accurate and independent energy measurement for the air showers measured through their radio signal with the LOFAR antennas. The energy reconstruction is performed using a parameterized relation between the measured shower size and the cosmic-ray energy obtained from air shower simulations. In order to illustrate the capabilities of LORA, the all-particle cosmic-ray energy spectrum has been reconstructed, assuming that cosmic rays are composed only of protons or iron nuclei in the energy range between ∼2 × 1016 and 2 × 1018 eV. The results are compatible with literature values and a changing mass composition in the transition region from a Galactic to an extragalactic origin of cosmic rays.

  • 37.
    Yadav, K. K.
    et al.
    Bhabha Atomic Research Centre, India.
    Chandra, P.
    Bhabha Atomic Research Centre, India.
    Tickoo, A. K.
    Bhabha Atomic Research Centre, India.
    Rannot, R. C.
    Bhabha Atomic Research Centre, India.
    Godambe, S.
    Bhabha Atomic Research Centre, India.
    Koul, M. K.
    Bhabha Atomic Research Centre, India.
    Dhar, V. K.
    Bhabha Atomic Research Centre, India.
    Thoudam, Satyendra
    Bhabha Atomic Research Centre, India.
    Bhatt, N.
    Bhabha Atomic Research Centre, India.
    Bhattacharyya, S.
    Bhabha Atomic Research Centre, India.
    Chanchalani, K.
    Bhabha Atomic Research Centre, India.
    Goyal, H. C.
    Bhabha Atomic Research Centre, India.
    Kaul, R. K.
    Bhabha Atomic Research Centre, India.
    Kothari, M.
    Bhabha Atomic Research Centre, India.
    Kotwal, S.
    Bhabha Atomic Research Centre, India.
    Koul, R.
    Bhabha Atomic Research Centre, India.
    Sahayanathan, S.
    Bhabha Atomic Research Centre, India.
    Sharma, M.
    Bhabha Atomic Research Centre, India.
    Venugopal, K.
    Bhabha Atomic Research Centre, India.
    Observations of TeV γ-rays from Mrk 421 during December 2005 to April 2006 with the TACTIC telescope2007Inngår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 27, nr 5, s. 447-454Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The TACTIC γ-ray telescope has observed Mrk 421 on 66 clear nights from December 07, 2005 to April 30, 2006, totalling ∼202 h of on-source observations. Here, we report the detection of flaring activity from the source at ⩾1 TeV energy and the time-averaged differential γ-ray spectrum in the energy range 1–11 TeV for the data taken between December 27, 2005 and February 07, 2006 when the source was in a relatively higher state as compared to the rest of the observation period. Analysis of this data spell, comprising ∼97 h reveals the presence of a ∼12.0σ γ-ray signal with daily flux of >1 Crab unit on several days. A pure power law spectrum with exponent −3.11 ± 0.11 as well as a power law spectrum with an exponential cutoff (Γ = −2.51 ± 0.26 and E0 = (4.7 ± 2.1) TeV) are found to provide reasonable fits to the inferred differential spectrum within statistical uncertainties. We believe that the TeV light curve presented here, for nearly 5 months of extensive coverage, as well as the spectral information at γ-ray energies of >5 TeV provide a useful input for other groups working in the field of γ-ray astronomy.

1 - 37 of 37
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf