lnu.sePublications
Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Augustsson, Anna
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Berger, Tobias
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Assessing the risk of an excess fluoride intake among Swedish children in households with private wells: Expanding static single-source methods to a probabilistic multi-exposure-pathway approach2014In: Environment International, ISSN 0160-4120, E-ISSN 1873-6750, Vol. 68, p. 192-199Article in journal (Refereed)
    Abstract [en]

    It is often assumed that water consumption is the major route of exposure for fluoride and analysis of water fluoride content is the most common approach for ensuring that the daily intake is not too high. In the present study, the risk of excess intake was characterized for children in households with private wells in Kalmar County, Sweden, where the natural geology shows local enrichments in fluorine. By comparing water concentrations with the WHO drinking water guideline (1.5 mg/L), it was found that 24% of the ca. 4800 sampled wells had a concentration above this limit, hence providing a figure for the number of children in the households concerned assessed to be at risk using this straightforward approach. The risk of an excess intake could, alternatively, also be characterized based on a tolerable daily intake (in this case the US EPA RfD of 0.06 mg/kg-day). The exposure to be evaluated was calculated using a probabilistic approach, where the variability in all exposure factors was considered, again for the same study population. The proportion of children assessed to be at risk after exposure from drinking water now increased to 48%, and when the probabilistic model was adjusted to also include other possible exposure pathways; beverages and food, ingestion of toothpaste, oral soil intake and dust inhalation, the number increased to 77%. Firstly, these results show how the risk characterization is affected by the basis of comparison. In this example, both of the reference values used are widely acknowledged. Secondly, it illustrates how much of the total exposure may be overlooked when only focusing on one exposure pathway, and thirdly, it shows the importance of considering the variability in all relevant pathways.

  • 2.
    Augustsson, Anna
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Uddh Söderberg, Terese
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Filipsson, Monika
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Helmfrid, Ingela
    Linköping University.
    Berglund, Marika
    Karolinska Institutet.
    Karlsson, Helen
    Linköping University.
    Hogmalm, Johan
    University of Gothenburg.
    Karlsson, Andreas
    University of Gothenburg.
    Alriksson, Stina
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Challenges in assessing the health risks of consuming vegetables in metal-contaminated environments2018In: Environment International, ISSN 0160-4120, E-ISSN 1873-6750, Vol. 113, p. 269-280Article in journal (Refereed)
    Abstract [en]

    A great deal of research has been devoted to the characterization of metal exposure due to the consumption of vegetables from urban or industrialized areas. It may seem comforting that concentrations in crops, as well as estimated exposure levels, are often found to be below permissible limits. However, we show that even a moderate increase in metal accumulation in crops may result in a significant increase in exposure. We also highlight the importance of assessing exposure levels in relation to a regional baseline. We have analyzed metal (Pb, Cd, As) concentrations in nearly 700 samples from 23 different vegetables, fruits, berries and mushrooms, collected near 21 highly contaminated industrial sites and from reference sites. Metal concentrations generally complied with permissible levels in commercial food and only Pb showed overall higher concentrations around the contaminated sites. Nevertheless, probabilistic exposure assessments revealed that the exposure to all three metals was significantly higher in the population residing around the contaminated sites, for both low-, medianand high consumers. The exposure was about twice as high for Pb and Cd, and four to six times as high for As. Since vegetable consumption alone did not result in exposure above tolerable intakes, it would have been easy to conclude that there is no risk associated with consuming vegetables grown near the contaminated sites. However, when the increase in exposure is quantified, its potential significance is harder to dismiss - especially when considering that exposure via other routes may be elevated in a similar way.

  • 3.
    Helmfrid, Ingela
    et al.
    Linköping University, Sweden.
    Ljunggren, Stefan
    Linköping University, Sweden.
    Nosratabadi, Reza
    Linköping University, Sweden.
    Augustsson, Anna
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Filipsson, Monika
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Fredriksson, Mats
    Linköping University, Sweden.
    Karlsson, Helen
    Linköping University, Sweden.
    Berglund, Marika
    Karolinska Institutet, Sweden.
    Exposure of metals and PAH through local foods and risk of cancer in a historically contaminated glassworks area2019In: Environment International, ISSN 0160-4120, E-ISSN 1873-6750, Vol. 131, p. 1-10, article id 104985Article in journal (Refereed)
    Abstract [en]

    Background

    Production of crystal glass and colored art glassware have been going on in the south-eastern part of Sweden since the 1700s, at over 100 glassworks and smaller glass blowing facilities, resulting in environmental contamination with mainly arsenic (As), cadmium (Cd), lead (Pb) and polycyclic hydrocarbons (PAH). High levels of metals have been found in soil, and moderately elevated levels in vegetables, mushrooms and berries collected around the glassworks sites compared with reference areas. Food in general, is the major exposure source to metals, such as Cd and Pb, and PAHs. Exposure to these toxic metals and PAH has been associated with a variety of adverse health effects in humans including cancer.

    Objective

    The aim of the present study was to evaluate the occurrence of cancer in a cohort from the contaminated glasswork area in relation to long-term dietary intake of locally produced foods, while taking into account residential, occupational and life styles factors.

    Methods

    The study population was extracted from a population cohort of 34,266 individuals who, at some time between the years 1979–2004, lived within a 2 km radius of a glassworks or glass landfill. Register information on cancer incidence and questionnaire information on consumption of local foods (reflecting 30 years general eating habits), life-time residence in the area, life style factors and occupational exposure was collected. Furthermore, blood (n = 660) and urine (n = 400) samples were collected in a subsample of the population to explore associations between local food consumption frequencies, biomarker concentrations in blood (Cd, Pb, As) and urine (PAH metabolite 1-OHPy) as well as environmental and lifestyle factors. The concurrent exposure to persistent organic pollutants (POPs) from food was also considered. A case-control study was performed for evaluation of associations between intakes of local food and risk of cancer.

    Results

    Despite high environmental levels of Cd, Pb and As at glasswork sites and landfills, current metal exposure in the population living in the surrounding areas was similar or only moderately higher in our study population compared to the general population. Reported high consumption of certain local foods was associated with higher Cd and Pb, but not As, concentrations in blood, and 1-OHPy in urine. An increased risk of cancer was associated with smoking, family history of cancer, obesity, and residence in glasswork area before age 5 years. Also, a long-term high consumption of local foods (reflecting 30 years general eating habits), i.e. fish and meat (game, chicken, lamb), was associated with increased risk of various cancer forms.

    Conclusions

    The associations between consumption of local food and different types of cancer may reflect a higher contaminant exposure in the past, and thus, if consumption of local food contributes to the risk of acquiring cancer, that contribution is probably lower today than before. Furthermore, it cannot be ruled out that other contaminants in the food contribute to the increased cancer risks observed.

  • 4.
    Kumar, Jitender
    et al.
    Uppsala University.
    Lind, P. Monica
    Uppsala University.
    Salihovic, Samira
    Uppsala University.
    van Bavel, Bert
    Örebro University.
    Nilsson Ekdahl, Kristina
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences. Uppsala University.
    Nilsson, Bo
    Uppsala University.
    Lind, Lars
    Uppsala University.
    Ingelsson, Erik
    Uppsala University.
    Influence of persistent organic pollutants on the complement system in a population-based human sample2014In: Environment International, ISSN 0160-4120, E-ISSN 1873-6750, Vol. 71, p. 94-100Article in journal (Refereed)
    Abstract [en]

    Background: Persistent organic pollutants (POPS) are toxic compounds generated through various industrial activities and have adverse effects on human health. Studies performed in cell cultures and animals have revealed that POPs can alter immune-system functioning. The complement system is part of innate immune system that helps to clear pathogens from the body. We performed a large-scale population-based study to find out associations between summary measures of different POPs and different complement system markers. Methods: In this cross-sectional study, 16 polychlorinated biphenyls (PCBs), 3 organochlorine (OC) pesticides, octachloro-p-dibenzodioxin, and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) were analyzed for their association with levels of protein complement 3 (C3), 3a (C3a), 4 (C4) and C3a/C3 ratio. A total of 992 individuals (all aged 70 years, 50% females) were recruited from the Prospective Investigation of the Vasculature in Uppsala Seniors cohort. Regression analysis adjusting for a variety of confounders was performed to study the associations of different POP exposures (total toxic equivalency value or TEQ and sum of 16 PCBs) with protein complements. Results: The TEQ values were found to be positively associated with C3a (beta = 0.07, 95% CI = 0.017-0.131, p = 0.01) and C3a/C3 ratio (beta = 0.07, 95% Cl = 0.015-0.126, p = 0.01) taking possible confounders into account. The association observed was mainly driven by PCB-126. Conclusion: In this study involving 992 elderly individuals from the general population, we showed that POPs, mainly PCB-126, were associated with levels of complement system markers indicating that the association of these toxic compounds with downstream disease could be mediated by activation of immune system. (C) 2014 Elsevier Ltd. All rights reserved.

  • 5.
    Markiewicz, Anna
    et al.
    Chalmers university of technology, Sweden.
    Strömvall, Ann-Margret
    Chalmers university of technology, Sweden.
    Björklund, Karin
    Chalmers university of technology, Sweden.
    Eriksson, Eva
    Linnaeus University, School of Business and Economics.
    Generation of nano- and micro-sized organic pollutant emulsions in simulated road runoff2019In: Environment International, ISSN 0160-4120, E-ISSN 1873-6750, Vol. 133, p. 1-12, article id 105140Article in journal (Refereed)
    Abstract [en]

    A wide range of organic pollutants (OPs) are emitted from the road and traffic environment and transported with road runoff to receiving waters. To provide an understanding of the transport routes of OPs in the environment, an investigation was carried out with the aim to determine whether OPs are transported with nano- and microparticles in the form of emulsions. Tests were performed on simulated road runoff, using laboratory prepared mixtures of ultrapure water and specific polycyclic aromatic hydrocarbons (PAHs), alkylphenols (APs) and their ethoxylates (APEOs), phthalates, diesel oil (aliphatic hydrocarbons), with and without addition of humic acid (HA) and iron (Fe) colloids. The samples were analysed directly after mixing and after a few days of stabilisation for particle size distribution (PSD) and concentrations of particles in the size range 10 nm-100 mu m, and zeta potential> +/- 500 mV. Further, after long-term storage to achieve stabilisation, selected samples were investigated for the PSD and particle concentrations in the ranges 10 nm-2 mu m, to determine whether stable emulsions had formed. The following simulation mixtures, both mixed and stabilised, were identified as potential emulsions: diesel, APs and APEOs, diesel with APs and APEOS, phthalates, and a mixture of all OPs with and without colloids. Measurements with the Zetasizer and Nanosight instruments imply that the majority of particles in the samples were found in the nano-range of 30-660 nm respectively, and a smaller portion of particles < 28% also measured with Coulter Counter were found to be micro-sized. Higher concentrations of the smallest nanoparticles were found in the mixture of all OPs without colloids added, than in the OP mixture with colloids added. The results indicate that the addition of colloids favours the formation of larger micro-sized emulsions that may break down with time into nano-sized particles. In the mixed samples, the number of micro-sized particles decreased, while the number of nanoparticles increased; this process may also occur in road runoff transportation systems during heavy rain events. This is the first study to indicate that emulsions of OPs may be formed in road runoff, and that emulsions may act as carriers of OPs in urban stormwater.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf