lnu.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 7 av 7
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Albet-Torres, Nuria
    et al.
    Linnéuniversitetet, Fakultetsnämnden för naturvetenskap och teknik, Institutionen för naturvetenskap, NV.
    Månsson, Alf
    Linnéuniversitetet, Fakultetsnämnden för naturvetenskap och teknik, Institutionen för naturvetenskap, NV.
    Long-Term Storage of Surface-Adsorbed Protein Machines2011Ingår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 27, nr 11, s. 7108-7112Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The effective and simple long-term storage of complex functional proteins is critical in achieving commercially viable biosensors. This issue is particularly challenging in recently proposed types of nanobiosensors, where molecular-motor-driven transportation substitutes microfluidics and forms the basis for novel detection schemes. Importantly, therefore, we here describe that delicate heavy meromyosin (HMM)-based nanodevices (HMM motor fragments adsorbed to silanized surfaces and actin bound to HMM) fully maintain their function when stored at -20 degrees C for more than a month. The mechanisms for the excellent preservation of acto-HMM motor function upon repeated freeze thaw cycles are discussed. The results are important to the future commercial implementation of motor-based nanodevices and are of more general value to the long-term storage of any protein-based bionanodevice.

  • 2.
    Lindberg, Frida W.
    et al.
    Lund University.
    Norrby, Marlene
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för kemi och biomedicin (KOB).
    Rahman, Mohammad A.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för kemi och biomedicin (KOB).
    Salhotra, Aseem
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för kemi och biomedicin (KOB).
    Takatsuki, Hideyo
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för kemi och biomedicin (KOB).
    Jeppesen, Soren
    Lund University.
    Linke, Heiner
    Lund University.
    Månsson, Alf
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för kemi och biomedicin (KOB).
    Controlled Surface Silanization for Actin-Myosin and Biocompatibility of New Polymer Resists2018Ingår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 34, nr 30, s. 8777-8784Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Molecular motor-based nanodevices require organized cytoskeletal filament guiding along motility-promoting tracks, confined by motility-inhibiting walls. One way to enhance motility quality on the tracks, particularly in terms of filament velocity but also the fraction of motile filaments, is to optimize the surface hydrophobicity. We have investigated the potential to achieve this for the actin myosin II motor system on trimethylchlorosilane (TMCS)-derivatized SiO2 surfaces to be used as channel floors in nanodevices. We have also investigated the ability to supress motility on two new polymer resists, TU7 (for nanoimprint lithography) and CSAR 62 (for electron beam and deep UV lithography), to be used as channel walls. We developed a chemical-vapor deposition tool for silanizing SiO2 surfaces in a controlled environment to achieve different surface hydrophobicities (measured by water contact angle). In contrast to previous work, we were able to fabricate a wide range of contact angles by varying the silanization time and chamber pressure using only one type of silane. This resulted in a significant improvement of the silanization procedure, producing a predictable contact angle on the surface and thereby predictable quality of the heavy meromyosin (HMM)-driven actin motility with regard to velocity. We observed a high degree of correlation between the filament sliding velocity and contact angle in the range 10-86 degrees, expanding the previously studied range. We found that the sliding velocity on TU7 surfaces was superior to that on CSAR 62 surfaces despite similar contact angles. In addition, we were able to suppress the motility on both TU7 and CSAR 62 by plasma oxygen treatment before silanization. These results are discussed in relation to previously proposed surface adsorption mechanisms of HMM and their relationship to the water contact angle. Additionally, the results are considered for the development of actin-myosin based nanodevices with superior performance with respect to actin-myosin functionality.

  • 3.
    Persson, Malin
    et al.
    Linnéuniversitetet, Fakultetsnämnden för naturvetenskap och teknik, Institutionen för naturvetenskap, NV.
    Albet-Torres, Nuria
    Linnéuniversitetet, Fakultetsnämnden för naturvetenskap och teknik, Institutionen för naturvetenskap, NV.
    Ionov, Leonid
    Sundberg, Mark
    Linnéuniversitetet, Fakultetsnämnden för naturvetenskap och teknik, Institutionen för naturvetenskap, NV.
    Höök, Fredrik
    Diez, Stefan
    Månsson, Alf
    Linnéuniversitetet, Fakultetsnämnden för naturvetenskap och teknik, Institutionen för naturvetenskap, NV.
    Balaz, Martina
    Linnéuniversitetet, Fakultetsnämnden för naturvetenskap och teknik, Institutionen för naturvetenskap, NV.
    Heavy meromyosin molecules extending more than 50 nm above adsorbing electronegative surfaces.2010Ingår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 26, nr 12, s. 9927-9936Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In the in vitro motility assay, actin filaments are propelled by surface-adsorbed myosin motors, or rather, myosin motor fragments such as heavy meromyosin (HMM). Recently, efforts have been made to develop actomyosin powered nanodevices on the basis of this assay but such developments are hampered by limited understanding of the HMM adsorption geometry. Therefore, we here investigate the HMM adsorption geometries on trimethylchlorosilane- [TMCS-] derivatized hydrophobic surfaces and on hydrophilic negatively charged surfaces (SiO(2)). The TMCS surface is of great relevance in fundamental studies of actomyosin and both surface substrates are important for the development of motor powered nanodevices. Whereas both the TMCS and SiO(2) surfaces were nearly saturated with HMM (incubation at 120 microg mL(-1)) there was little actin binding on SiO(2) in the absence of ATP and no filament sliding in the presence of ATP. This contrasts with excellent actin-binding and motility on TMCS. Quartz crystal microbalance with dissipation (QCM-D) studies demonstrate a HMM layer with substantial protein mass up to 40 nm above the TMCS surface, considerably more than observed for myosin subfragment 1 (S1; 6 nm). Together with the excellent actin transportation on TMCS, this strongly suggests that HMM adsorbs to TMCS mainly via its most C-terminal tail part. Consistent with this idea, fluorescence interference contrast (FLIC) microscopy showed that actin filaments are held by HMM 38 +/- 2 nm above the TMCS-surface with the catalytic site, on average, 20-30 nm above the surface. Viewed in a context with FLIC, QCM-D and TIRF results, the lack of actin motility and the limited actin binding on SiO(2) shows that HMM adsorbs largely via the actin-binding region on this surface with the C-terminal coiled-coil tails extending >50 nm into solution. The results and new insights from this study are of value, not only for the development of motor powered nanodevices but also for the interpretation of fundamental biophysical studies of actomyosin function and for the understanding of surface-protein interactions in general.

  • 4.
    Torres, Nuria Albet
    et al.
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    O'MAHONY, JOHN
    Charlton, Christy
    Balaz, Martina
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Lisboa, P
    Aastrup, Teodor
    Månsson, Alf
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Nicholls, Ian Alan
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Mode of Heavy Meromyosin Adsorption and Motor Function Correlated with Surface Hydrophobicity and Charge2007Ingår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 23, s. 11147-11156Artikel i tidskrift (Refereegranskat)
  • 5. van Zalinge, Harm
    et al.
    Aveyard, Jenny
    Hajne, Joanna
    Persson, Malin
    Linnéuniversitetet, Fakultetsnämnden för naturvetenskap och teknik, Institutionen för naturvetenskap, NV.
    Månsson, Alf
    Linnéuniversitetet, Fakultetsnämnden för naturvetenskap och teknik, Institutionen för naturvetenskap, NV.
    Nicolau, Dan V.
    Actin Filament Motility Induced Variation of Resonance Frequency and Rigidity of Polymer Surfaces Studied by Quartz Crystal Microbalance2012Ingår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 28, nr 42, s. 15033-15037Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This contribution reports on the quantification of the parameters of the motility assays for actomyosin system using a quartz crystal microbalance (QCM). In particular, we report on the difference in the observed resonance frequency and dissipation of a quartz crystal when actin filaments are stationary as opposed to when they are motile. The changes in QCM measurements were studied for various polymer-coated surfaces functionalized with heavy meromyosin (HMM). The results of the QCM experiments show that the HMM-induced sliding velocity of actin filaments is modulated by a combination of the viscoelastic properties of the polymer layer including the HMM motors.

  • 6.
    van Zalinge, Harm
    et al.
    Univ Liverpool, UK.
    Ramsey, Laurence C.
    Univ Liverpool, UK.
    Aveyard, Jenny
    Univ Liverpool, UK.
    Persson, Malin
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för kemi och biomedicin (KOB).
    Månsson, Alf
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för kemi och biomedicin (KOB).
    Nicolau, Dan V.
    Univ Liverpool, UK ; McGill Univ, Canada.
    Surface-Controlled Properties of Myosin Studied by Electric Field Modulation2015Ingår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 31, nr 30, s. 8354-8361Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The efficiency of dynamic nanodevices using surface-immobilized protein molecular motors, which have been proposed for diagnostics, drug discovery, and biocomputation, critically depends on the ability to precisely control the motion of motor-propelled, individual cytoskeletal filaments transporting cargo to designated locations. The efficiency of these devices also critically depends on the proper function of the propelling motors, which is controlled by their interaction with the surfaces they are immobilized on. Here we use a microfluidic device to study how the motion of the motile elements, i.e., actin filaments propelled by heavy mero-myosin (HMM) motor fragments immobilized on various surfaces, is altered by the application of electrical loads generated by an external electric field with strengths ranging from 0 to 8 kVm(-1). Because the motility is intimately linked to the function of surface-immobilized motors, the study also showed how the adsorption properties of HMM on various surfaces, such as nitrocellulose (NC), trimethylclorosilane (TMCS), poly(methyl methacrylate) (PMMA), poly(tert-butyl methacrylate) (PtBMA), and poly(butyl methacrylate) (PBMA), can be characterized using an external field. It was found that at an electric field of 5 kVm(-1) the force exerted on the filaments is sufficient to overcome the frictionlike resistive force of the inactive motors. It was also found that the effect of assisting electric fields on the relative increase in the sliding velocity was markedly higher for the TMCS-derivatized surface than for all other polymer-based surfaces. An explanation of this behavior, based on the molecular rigidity of the TMCS-on-glass surfaces as opposed to the flexibility of the polymer-based ones, is considered. To this end, the proposed microfluidic device could be used to select appropriate surfaces for future lab-on-a-chip applications as illustrated here for the almost ideal TMCS surface. Furthermore, the proposed methodology can be used to gain fundamental insights into the functioning of protein molecular motors, such as the force exerted by the motors under different operational conditions.

  • 7.
    Vikhorev, Petr
    et al.
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Vikhoreva, NN
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Sundberg, Mark
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Balaz, Martina
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Torres, Nuria Albet
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Bunk, Richard
    Kvennefors, Anders
    Liljesson, Kenneth
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Nicholls, Ian A.
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Nilsson, Leif
    Omling, Pär
    Tågerud, Sven
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Montelius, Lars
    Månsson, Alf
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Diffusion dynamics of motor driven transport: gradient production and self-organization of surfaces.2008Ingår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 24, nr 23, s. 13509-13517Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The interaction between cytoskeletal filaments (e.g., actin filaments) and molecular motors (e.g., myosin) is the basis for many aspects of cell motility and organization of the cell interior. In the in vitro motility assay (IVMA), cytoskeletal filaments are observed while being propelled by molecular motors adsorbed to artificial surfaces (e.g., in studies of motor function). Here we integrate ideas that cytoskeletal filaments may be used as nanoscale templates in nanopatterning with a novel approach for the production of surface gradients of biomolecules and nanoscale topographical features. The production of such gradients is challenging but of increasing interest (e.g., in cell biology). First, we show that myosin-induced actin filament sliding in the IVMA can be approximately described as persistent random motion with a diffusion coefficient D) given by a relationship analogous to the Einstein equation (D = kT/gamma). In this relationship, the thermal energy (kT) and the drag coefficient (gamma) are substituted by a parameter related to the free-energy transduction by actomyosin and the actomyosin dissociation rate constant, respectively. We then demonstrate how the persistent random motion of actin filaments can be exploited in conceptually novel methods for the production of actin filament density gradients of predictable shapes. Because of regularly spaced binding sites (e.g., lysines and cysteines) the actin filaments act as suitable nanoscale scaffolds for other biomolecules (tested for fibronectin) or nanoparticles. This forms the basis for secondary chemical and topographical gradients with implications for cell biological studies and biosensing.

1 - 7 av 7
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf