lnu.sePublikasjoner
Endre søk
Begrens søket
1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Lindberg, Frida W.
    et al.
    Lund University.
    Norrby, Marlene
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för kemi och biomedicin (KOB).
    Rahman, Mohammad A.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för kemi och biomedicin (KOB).
    Salhotra, Aseem
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för kemi och biomedicin (KOB).
    Takatsuki, Hideyo
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för kemi och biomedicin (KOB).
    Jeppesen, Soren
    Lund University.
    Linke, Heiner
    Lund University.
    Månsson, Alf
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för kemi och biomedicin (KOB).
    Controlled Surface Silanization for Actin-Myosin and Biocompatibility of New Polymer Resists2018Inngår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 34, nr 30, s. 8777-8784Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Molecular motor-based nanodevices require organized cytoskeletal filament guiding along motility-promoting tracks, confined by motility-inhibiting walls. One way to enhance motility quality on the tracks, particularly in terms of filament velocity but also the fraction of motile filaments, is to optimize the surface hydrophobicity. We have investigated the potential to achieve this for the actin myosin II motor system on trimethylchlorosilane (TMCS)-derivatized SiO2 surfaces to be used as channel floors in nanodevices. We have also investigated the ability to supress motility on two new polymer resists, TU7 (for nanoimprint lithography) and CSAR 62 (for electron beam and deep UV lithography), to be used as channel walls. We developed a chemical-vapor deposition tool for silanizing SiO2 surfaces in a controlled environment to achieve different surface hydrophobicities (measured by water contact angle). In contrast to previous work, we were able to fabricate a wide range of contact angles by varying the silanization time and chamber pressure using only one type of silane. This resulted in a significant improvement of the silanization procedure, producing a predictable contact angle on the surface and thereby predictable quality of the heavy meromyosin (HMM)-driven actin motility with regard to velocity. We observed a high degree of correlation between the filament sliding velocity and contact angle in the range 10-86 degrees, expanding the previously studied range. We found that the sliding velocity on TU7 surfaces was superior to that on CSAR 62 surfaces despite similar contact angles. In addition, we were able to suppress the motility on both TU7 and CSAR 62 by plasma oxygen treatment before silanization. These results are discussed in relation to previously proposed surface adsorption mechanisms of HMM and their relationship to the water contact angle. Additionally, the results are considered for the development of actin-myosin based nanodevices with superior performance with respect to actin-myosin functionality.

  • 2.
    Rahman, Mohammad A.
    et al.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för kemi och biomedicin (KOB). Lund University, Sweden.
    Reuther, Cordula
    Tech Univ Dresden, Germany;Max Planck Inst Mol Cell Biol & Genet, Germany.
    Lindberg, Frida W.
    Lund University, Sweden.
    Mengoni, Martina
    Tech Univ Dresden, Germany;Max Planck Inst Mol Cell Biol & Genet, Germany.
    Salhotra, Aseem
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för kemi och biomedicin (KOB). Lund University, Sweden.
    Heldt, Georg
    Fraunhofer Inst Elect Nano Syst, Germany.
    Linke, Heiner
    Lund University, Sweden.
    Diez, Stefan
    Tech Univ Dresden, Germany;Max Planck Inst Mol Cell Biol & Genet, Germany.
    Månsson, Alf
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för kemi och biomedicin (KOB). Lund University, Sweden.
    Regeneration of Assembled, Molecular-Motor-Based Bionanodevices2019Inngår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 19, nr 10, s. 7155-7163Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The guided gliding of cytoskeletal filaments, driven by biomolecular motors on nano/microstructured chips, enables novel applications in biosensing and biocomputation. However, expensive and time-consuming chip production hampers the developments. It is therefore important to establish protocols to regenerate the chips, preferably without the need to dismantle the assembled microfluidic devices which contain the structured chips. We here describe a novel method toward this end. Specifically, we use the small, nonselective proteolytic enzyme, proteinase K to cleave all surface-adsorbed proteins, including myosin and kinesin motors. Subsequently, we apply a detergent (5% SDS or 0.05% Triton X100) to remove the protein remnants. After this procedure, fresh motor proteins and filaments can be added for new experiments. Both, silanized glass surfaces for actin-myosin motility and pure glass surfaces for microtubule-kinesin motility were repeatedly regenerated using this approach. Moreover, we demonstrate the applicability of the method for the regeneration of nano/microstructured silicon-based chips with selectively functionalized areas for supporting or suppressing gliding motility for both motor systems. The results substantiate the versatility and a promising broad use of the method for regenerating a wide range of protein-based nano/microdevices.

  • 3.
    Verardo, Damiano
    et al.
    Lund University, Sweden.
    Lindberg, Frida W.
    Lund University, Sweden.
    Anttu, Nicklas
    Lund University, Sweden;AstraZeneca, Sweden.
    Niman, Cassandra S.
    Lund University, Sweden;University of California San Diego, USA.
    Lard, Mercy
    Lund University, Sweden.
    Dabkowska, Aleksandra P.
    Lund University, Sweden;Aalto University, Finland.
    Nylander, Tommy
    Lund University, Sweden.
    Månsson, Alf
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för kemi och biomedicin (KOB). Lund University, Sweden.
    Prinz, Christelle N.
    Lund University, Sweden.
    Linke, Heiner
    Lund University, Sweden.
    Nanowires for Biosensing: Lightguiding of Fluorescence as a Function of Diameter and Wavelength2018Inngår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 18, nr 8, s. 4796-4802Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Semiconductor nanowires can act as nanoscaled optical fibers, enabling them to guide and concentrate light emitted by surface-bound fluorophores, potentially enhancing the sensitivity of optical biosensing. While parameters such as the nanowire geometry and the fluorophore wavelength can be expected to strongly influence this lightguiding effect, no detailed description of their effect on in-coupling of fluorescent emission is available to date. Here, we use confocal imaging to quantify the lightguiding effect in GaP nanowires as a function of nanowire geometry and light wavelength. Using a combination of finite-difference time-domain simulations and analytical approaches, we identify the role of multiple waveguide modes for the observed lightguiding. The normalized frequency parameter, based on the step-index approximation, predicts the lightguiding ability of the nanowires as a function of diameter and fluorophore wavelength, providing a useful guide for the design of optical biosensors based on nanowires.

1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf