lnu.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Engberg, Anna E.
    et al.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Sandholm, Kerstin
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Bexborn, Fredrik
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Persson, Jenny
    Lund University.
    Nilsson, Bo
    Uppsala University.
    Lindahl, Gunnar
    Lund University.
    Nilsson Ekdahl, Kristina
    University of Kalmar, School of Pure and Applied Natural Sciences. Uppsala University.
    Inhibition of complement activation on a model biomaterial surface by streptococcal M protein-derived peptides2009In: Biomaterials, ISSN 0142-9612, E-ISSN 1878-5905, Vol. 30, no 13, p. 2653-2659Article in journal (Refereed)
    Abstract [en]

    The aim of this study was to evaluate a new approach to inhibit complement activation triggered by biomaterial surfaces in contact with blood. In order to inhibit complement activation initiated by the classical pathway (CP), we used streptococcal M protein-derived peptides that specifically bind human C4BP, an inhibitor of the CP. The peptides were used to coat polystyrene microtiter wells which served as a model biomaterial. The ability of coated peptides to bind C4BP and to attenuate complement activation via the CP (monitored as generation of fluid-phase C3a and binding of fragments of C3 and C4 to the surface) was investigated using diluted normal human serum, where complement activation by the AP is minimal, as well as serum from a patient lacking alternative pathway activation. Complement activation (all parameters) was significantly decreased in serum incubated in well surfaces coated with peptides. Total inhibition of complement activation was obtained at peptide coating concentrations as low as 1-5 mu g/mL. Successful use of Streptococcus-derived peptides shows that it is feasible to control complement activation at a model biomaterial surface by capturing autologous complement regulatory molecules from plasma. (C) 2009 Elsevier Ltd. All rights reserved.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf