lnu.sePublications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Cerro-Galvez, Elena
    et al.
    CSIC, IDAEA, Spain.
    Casal, Paulo
    CSIC, IDAEA, Spain.
    Lundin, Daniel
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Pina, Benjamin
    CSIC, IDAEA, Spain.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Dachs, Jordi
    CSIC, IDAEA, Spain.
    Vila-Costa, Maria
    CSIC, IDAEA, Spain.
    Microbial responses to anthropogenic dissolved organic carbon in the Arctic and Antarctic coastal seawaters2019In: Environmental Microbiology, ISSN 1462-2912, E-ISSN 1462-2920, Vol. 21, no 4, p. 1466-1481Article in journal (Refereed)
    Abstract [en]

    Thousands of semi-volatile hydrophobic organic pollutants (OPs) reach open oceans through atmospheric deposition, causing a chronic and ubiquitous pollution by anthropogenic dissolved organic carbon (ADOC). Hydrophobic ADOC accumulates in cellular lipids, inducing harmful effects on marine biota, and can be partially prone to microbial degradation. Unfortunately, their possible effects on microorganisms, key drivers of global biogeochemical cycles, remain unknown. We challenged coastal microbial communities from Ny-angstrom lesund (Arctic) and Livingston Island (Antarctica) with ADOC concentrations within the range of oceanic concentrations in 24 h. ADOC addition elicited clear transcriptional responses in multiple microbial heterotrophic metabolisms in ubiquitous groups such as Flavobacteriia, Gammaproteobacteria and SAR11. Importantly, a suite of cellular adaptations and detoxifying mechanisms, including remodelling of membrane lipids and transporters, was detected. ADOC exposure also changed the composition of microbial communities, through stimulation of rare biosphere taxa. Many of these taxa belong to recognized OPs degraders. This work shows that ADOC at environmentally relevant concentrations substantially influences marine microbial communities. Given that emissions of organic pollutants are growing during the Anthropocene, the results shown here suggest an increasing influence of ADOC on the structure of microbial communities and the biogeochemical cycles regulated by marine microbes.

  • 2.
    Karlsson, Christofer M. G.
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Cerro-Galvez, Elena
    CSIC, Spain.
    Lundin, Daniel
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Karlsson, Camilla
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Vila-Costa, Maria
    CSIC, Spain.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Direct effects of organic pollutants on the growth and gene expression of the Baltic Sea model bacterium Rheinheimera sp. BAL3412019In: Microbial Biotechnology, ISSN 1751-7907, E-ISSN 1751-7915, Vol. 12, no 5, p. 892-906Article in journal (Refereed)
    Abstract [en]

    Organic pollutants (OPs) are critically toxic, bioaccumulative and globally widespread. Moreover, several OPs negatively influence aquatic wildlife. Although bacteria are major drivers of the ocean carbon cycle and the turnover of vital elements, there is limited knowledge of OP effects on heterotrophic bacterioplankton. We therefore investigated growth and gene expression responses of the Baltic Sea model bacterium Rheinheimera sp. BAL341 to environmentally relevant concentrations of distinct classes of OPs in 2-h incubation experiments. During exponential growth, exposure to a mix of polycyclic aromatic hydrocarbons, alkanes and organophosphate esters (denoted MIX) resulted in a significant decrease (between 9% and 18%) in bacterial abundance and production compared with controls. In contrast, combined exposure to perfluorooctanesulfonic acids and perfluorooctanoic acids (denoted PFAS) had no significant effect on growth. Nevertheless, MIX and PFAS exposures both induced significant shifts in gene expression profiles compared with controls in exponential growth. This involved several functional metabolism categories (e.g. stress response and fatty acids metabolism), some of which were pollutant-specific (e.g. phosphate acquisition and alkane-1 monooxygenase genes). In stationary phase, only two genes in the MIX treatment were significantly differentially expressed. The substantial direct influence of OPs on metabolism during bacterial growth suggests that widespread OPs could severely alter biogeochemical processes governed by bacterioplankton.

  • 3.
    Vila-Costa, Maria
    et al.
    IDAEA CSIC, Spain.
    Sebastian, Marta
    CSIC, Spain;Univ Las Palmas Gran Canaria, Spain.
    Pizarro, Mariana
    IDAEA CSIC, Spain.
    Cerro-Galvez, Elena
    IDAEA CSIC, Spain.
    Lundin, Daniel
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Gasol, Josep M.
    CSIC, Spain.
    Dachs, Jordi
    IDAEA CSIC, Spain.
    Microbial consumption of organophosphate esters in seawater under phosphorus limited conditions2019In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, article id 233Article in journal (Refereed)
    Abstract [en]

    The anthropogenic perturbation of the phosphorus (P) marine biogeochemical cycle due to synthetic organophosphorus compounds remains unexplored. The objective of this work was to investigate the microbial degradation of organophosphate triesters (OPEs), widely used as plasticizers and flame retardants, in seawater and their effects on the physiology and composition of microbial communities. Experiments were performed in July 2014 using surface seawater from the Blanes Bay Microbial Observatory (NW Mediterranean) to which OPEs were added at environmentally relevant concentrations. The concentrations of OPEs in the dissolved-phase generally decreased after 24 hours of incubation at in situ conditions. The fitted first order reaction constants were significantly different than zero for the trihaloalkyl phosphate, tris(2-chloroethyl) phosphate and trialyl phosphate tricresyl phosphate. In general, OPEs triggered an increase of the percentage of actively respiring bacteria, total bacterial activity, and the number of low-nucleic acid bacteria, and a decrease in the percentage of membrane-compromised bacteria. Members of some bacterial groups, in particular Flavobacteria, increased their specific activity, indicating that seawater contains bacteria with the potential to degrade OPEs. In aged seawater that was presumably depleted of labile dissolved organic carbon and inorganic P, alkaline phosphatase activities significantly decreased when OPEs were added, indicating a relief on P stress, consistent with the role of OPEs as potential P sources.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf