lnu.sePublications
Change search
Refine search result
12 1 - 50 of 58
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Albertazz, S.
    et al.
    Basile, F.
    Brandin, Jan
    Växjö University, Faculty of Mathematics/Science/Technology, School of Technology and Design.
    Einvall, Jessica
    Växjö University, Faculty of Mathematics/Science/Technology, School of Technology and Design.
    Fornasar, G.
    Hulteberg, C.
    Sanati, M.
    Trifir, F.
    Vaccari, A.
    Pt/Rh/MgAl(O) Catalyst for the Upgrading of Biomass-Generated synthesis gases.2009In: Energy & Fuels, ISSN 0887-0624, E-ISSN 1520-5029, Vol. 23, no 1, p. 573-579Article in journal (Refereed)
  • 2. Albertazzi, Simone
    et al.
    Basile, Francesco
    Barbera, Davide
    Benito, Patricia
    Brandin, Jan
    Linnaeus University, Faculty of Science and Engineering, School of Engineering.
    Einvall, Jessica
    Linnaeus University, Faculty of Science and Engineering, School of Engineering.
    Fornasari, Giuseppe
    Trifirò, Ferruccio
    Vaccari, Angelo
    Deactivation of a Ni-Based Reforming Catalyst During the Upgrading of the Producer Gas, from Simulated to Real Conditions2011In: Topics in catalysis, ISSN 1022-5528, E-ISSN 1572-9028, Vol. 54, no 10, p. 746-754Article in journal (Refereed)
    Abstract [en]

    The deactivation of a nickel reforming catalyst during the upgrading of the producer gas obtained by gasification of lignocellulosic biomass was studied. The research involved several steps: the selective deactivation of the catalyst in a laboratory scale; the streaming of the catalyst with the producer gas of a downdraft and an oxygen/steam circulating fluidized bed (CFB) gasifier; and tests in a reformer placed in a slipstream of the CFB gasifier. The information obtained allowed to elucidate the catalyst deactivation mechanisms taking place during the reforming of the producer gas: physical deactivation by deposition of fine ashes, aerosol particulate or carbon; poisoning by H2S and HCl present in the gas phase and thermal sintering because of the high operation temperatures required to avoid the chemical deactivation. These physical and chemical effects depended on the composition of the biomass fuel.

  • 3.
    Basile, Francesco
    et al.
    University of Bologna.
    Albertazzi, Simone
    University of Bologna.
    Barbera, David
    University of Bologna.
    Benito, Patricia
    University of Bologna.
    Einvall, Jessica
    Linnaeus University, Faculty of Science and Engineering, School of Engineering.
    Brandin, Jan
    Linnaeus University, Faculty of Science and Engineering, School of Engineering.
    Fornasari, G.
    University of Bologna.
    Trifiro, Ferrucio
    University of Bologna.
    Vaccari, A.
    University of Bologna.
    Steam reforming of hot gas from gasified wood types and miscanthus biomass2011In: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 35, no Supplement 1, p. S116-S122Article in journal (Refereed)
    Abstract [en]

    The reforming of hot gas generated from biomass gasification and high temperature gas filtration was studied in order to reach the goal of the CHRISGAS project: a 60% of synthesis gas (as x(H2)+ x(CO) on a N2 and dry basis) in the exit gas, which can be converted either into H2 or fuels. A Ni-MgAl2O4 commercial-like catalyst was tested downstream the gasification of clean wood made of saw dust, waste wood and miscanthus as herbaceous biomass. The effect of the temperature and contact time on the hydrocarbon conversion as well as the characterization of the used catalysts was studied. Low (<600 °C), medium (750°C–900 °C) and high temperature (900°C–1050 °C) tests were carried out in order to study, respectively, the tar cracking, the lowest operating reformer temperature for clean biomass, the methane conversion achievable as function of the temperature and the catalyst deactivation. The results demonstrate the possibility to produce an enriched syngas by the upgrading of the gasification stream of woody biomass with low sulphur content. However, for miscanthusthe development of catalysts with an enhanced resistance to sulphur poison will be the key point in the process development.

  • 4. Bengtsson, Sune
    et al.
    Brandin, Jan
    Växjö University, Faculty of Mathematics/Science/Technology, School of Technology and Design. Bioenergiteknik.
    Einvall, Jessica
    Växjö University, Faculty of Mathematics/Science/Technology, School of Technology and Design. Bioenergiteknik.
    Sanati, Mehri
    Production of syngas by thermochemical conversion of lignocelluloses biomass2007In: Italic4, Science & Technology of biomasses: advances and challenges, 2007, p. 125-128Conference paper (Refereed)
  • 5.
    Brandin, Jan
    Växjö University, Faculty of Mathematics/Science/Technology, School of Technology and Design.
    Bio-Propane from glycerol for biogas addition2008Report (Other academic)
    Abstract [en]

    In this report, the technical and economical feasibility to produce higher alkanes from bioglycerol has been investigated. The main purpose of producing this kind of chemicals would be to replace the fossil LPG used in upgraded biogas production. When producing biogas and exporting it to the natural gas grid, the Wobbe index and heating value does not match the existing natural gas. Therefore, the upgraded biogas that is put into the natural gas grid in Sweden today contains 8-10 vol-% of LPG. The experimental work performed in association to this report has shown that it is possible to produce propane from glycerol. However, the production of ethane from glycerol may be even more advantageous. The experimental work has included developing and testing catalysts for several intermediate reactions. The work was performed using different micro-scale reactors with a liquid feed rate of 18 g/h. The first reaction, independent on if propane or ethane is to be produced, is dehydration of glycerol to acrolein. This was showed during 60 h on an acidic catalyst with a yield of 90%. The production of propanol, the second intermediate to producing propane, was shown as well. Propanol was produced both using acrolein as the starting material as well as glycerol (combining the first and second step) with yields of 70-80% in the first case and 65-70% in the second case. The propanol produced was investigated for its dehydration to propene, witha yield of 70-75%. By using a proprietary, purposely developed catalyst the propene was hydrogenated to propane, with a yield of 85% from propanol. The formation of propane from glycerol was finally investigated, with an overall yield of 55%.

    The second part of the experimental work performed investigated the possibilities of decarbonylating acrolein to form ethane. This was made possible by the development of a proprietary catalyst which combines decarbonylation and water-gas shift functionality. By combining these two functionalities, no hydrogen have to be externally produced which is the case of the propane produced. The production of ethane from acrolein was shown with a yield of 75%, while starting from glycerol yielded 65-70% ethane using the purposely developed catalyst. However, in light of this there are still work to be performed with optimizing catalyst compositions and process conditions to further improve the process yield. The economic feasibility and the glycerol supply side of the proposed process have been investigated as well within the scope of the report. After an initial overview of the glycerol supply, it is apparent that at least the addition of alkanes to biogas can be saturated by glycerol for the Swedish market situation at the moment and for a foreseeable future. The current domestic glycerol production would sustain the upgraded biogas industry for quite some time, if necessary. However, from a cost standpoint a lower grade glycerol should perhaps be considered.

  • 6.
    Brandin, Jan
    Linnaeus University, Faculty of Technology, Department of Building and Energy Technology.
    Reforming of tars and hydrocarbons from gasified biomass2013In: Relesing Green Bioenergy for Human: Main Conference Volum 2, Dalia, PR China: BIT Congress , 2013Conference paper (Refereed)
    Abstract [en]

    Tars are produced during gasification of biomass due to thermal decomposition of main constituent of the biomass, cellulose, hemicellulose and lignin. Since the tars will condense on colder surfaces, they cause problems by clogging of pipes and valves and depositions on heat transfer surfaces, for instance. One strategy is to remove the tars by condensing them in water or oil scrubbers, however since the tars might contain a significant part of the heating value in the producer gas the yield of the produced synthesis gas will decrease. To utilize the heat content in the tars they can be converted in situ to synthesis gas either by a catalytic process like steam reforming or autothermal reforming (ATR). The problem with catalytic reforming is that the catalysts used are sensitive towards the sulphur content, mainly H2S, in the producer gas. The deactivation of the reforming catalysts can be counteracted by increasing the reforming temperature, for instance  by the use of ATR. However, at elevated temperature, 1000-1100 oC, the thermal sintering of the catalyst will be accelerated instead. There is a need for development of new high temperature stable reforming catalysts. Another problem is the production of soot due to the high temperatures in the flame in the autothermal reformer unit. The formed sooth will cause problems by clogging packed bed of reforming catalyst and to cope with this it is probably necessary to use a monolithic catalyst.   However, by developing a way to homogenous combust the added oxygen, avoiding the peak temperatures in the flame, would suppress or eventually eliminate the soot formation.      

  • 7.
    Brandin, Jan
    Linnaeus University, Faculty of Technology, Department of Building and Energy Technology.
    Usage of Biofuels in Sweden2013In: CSR-2 Catalyst for renewable sources: Fuel, Energy, Chemicals Book of Abstracts / [ed] Vadim Yakovlev, Boreskov Institute of Catalysis, Novosibrisk, Russia: Boreskov Institute of Catalysis , 2013, p. 5-7Conference paper (Refereed)
    Abstract [en]

    In Sweden, biofuels have come into substantial use, in an extent that are claimed to be bigger than use of fossil oil. One driving force for this have been the CO2-tax that was introduced in 1991 (1). According to SVEBIO:s calculations (2) based on the Swedish Energy Agency´s prognosis, the total energy consumption in Sweden 2012 was 404 TWh. If the figure is broken down on the different energy sources (figure 1) one can see that the consumption roughly distribute in three different, equally sized, blocks, Biofuels, fossil fuels and water & nuclear power. The major use of the fossil fuels is for transport and the water & nuclear power is used as electric power. The main use of the biofuels is for heating in the industrial sector and as district heating. In 2009 the consumption from those two segments was 85 TWh, and 10 TWh of bio power was co-produced giving an average biomass to electricity efficiency of 12%. This indicates a substantial conversion potential from hot water production to combined heat and power (CHP) production. in Sweden 2013 broken down on the different energy sources. In 2006 the pulp, paper and sawmill industry accounted for 95% of the bio energy consumption in the industrial sector, and the major biofuel consumed was black liquor (5). However, the pulp and paper industries also produced the black liquor in their own processes. The major energy source (58%) for district heating during 2006 was woody biomass (chips, pellets etc.) followed by waste (24%), peat (6%) and others (12%) (5). The use of peat has probably decreased since 2006 since peat is no longer regarded as a renewable energy source. While the use of biofuel for heating purpose is well developed and the bio-power is expected to grow, the use in the transport sector is small, 9 TWh or 7% in 2011. The main consumption there is due to the mandatory addition (5%) of ethanol to gasoline and FAME to diesel (6). The Swedish authorities have announced plans to increase the renewable content to 7.5 % in 2015 on the way to fulfill the EU’s goal of 10 % renewable transportation fuels in 2020. However the new proposed fuel directive in EU says that a maximum of 5% renewable fuel may be produced from food sources like sugars and vegetable oils. Another bothersome fact is that, in principle, all rape seed oil produced in Sweden is consumed (95-97%) in the food sector, and consequently all FAME used (in principle) in Sweden is imported as FAME, rape seed oil or seed (6). In Sweden a new source of biodiesel have emerged, tall oil diesel. Tall oil is extracted from black liquor and refined into a diesel fraction (not FAME) and can be mixed into fossil diesel, i.e. Preem Evolution diesel. The SUNPINE plant in Piteå have a capacity of 100 000 metric tons of tall oil diesel per annum, while the total potential in all of Sweden is claimed to be 200 000 tons (7). 100 000 tons of tall oil corresponds to 1% of the total diesel consumption in Sweden. in Sweden for 2010 and a prognosis for 2014. (6). Accordingly, the profoundest task is to decrease the fossil fuel dependency in the transport sector, and clearly, the first generation biofuels can´t do this on its own. Biogas is a fuel gas with high methane content that can be used in a similar way to natural gas; for instance for cooking, heating and as transportation fuel. Today biogas is produced by fermentation of waste (municipal waste, sludge, manure), but can be produced by gasification of biomass, for instance from forest residues such as branches and rots (GROT in Swedish). To get high efficiency in the production, the lower hydrocarbons, mainly methane, in the producer gas, should not be converted into synthesis gas. Instead a synthesis gas with high methane content is sought. This limits the drainage of chemically bonded energy, due to the exothermic reaction in the synthesis step (so called methanisation). In 2011 0.7 TWh of biogas was produced in Sweden by fermentation of waste (6) and there were no production by gasification, at least not of economic importance. The potential seems to be large, though. In 2008 the total potential for biogas production, in Sweden, from waste by fermentation and gasification was estimated to 70 TWh (10 TWh fermentation and 60 TWh gasification) (8). This figure includes only different types of waste and no dedicated agricultural crops or dedicated forest harvest. Activities in the biogas sector, by gasification, in Sweden are the Göteborgs energi´s Gobigas project in Gothenburg and Eon´s Bio2G-project, now pending, in south of Sweden. If the producer gas is cleaned and upgraded into synthesis gas also other fuels could be produced. In Sweden methanol and DME productions are planned for in the Värmlands metanol-project and at Chemrecs DME production plant in Piteå.

  • 8.
    Brandin, Jan
    et al.
    Växjö University, Faculty of Mathematics/Science/Technology, School of Technology and Design. Bioenergiteknik.
    Einvall, Jessica
    Växjö University, Faculty of Mathematics/Science/Technology, School of Technology and Design. Bioenergiteknik.
    Biomass to liquid fuels via gasification process: The CHRISGAS project2008In: The 14th International Congress on Catalysis: Catalysis as the Pivotal Technology for the Future Society, 2008, p. 122-Conference paper (Refereed)
  • 9.
    Brandin, Jan
    et al.
    Växjö University, Faculty of Mathematics/Science/Technology, School of Technology and Design.
    Einvall, Jessica
    Växjö University, Faculty of Mathematics/Science/Technology, School of Technology and Design.
    Sanati, Mehri
    Växjö University, Faculty of Mathematics/Science/Technology, School of Technology and Design.
    Effect of fly ash and H2S on a Ni-based catalyst for the upgrading of a biomass-generated gas2008In: Biomass and Bioenergy, ISSN 0961-9534, Vol. 32, no 4, p. 345-353Article in journal (Refereed)
  • 10.
    Brandin, Jan
    et al.
    Växjö University, Faculty of Mathematics/Science/Technology, School of Technology and Design. Bioenergiteknik.
    Einvall, Jessica
    Växjö University, Faculty of Mathematics/Science/Technology, School of Technology and Design. Bioenergiteknik.
    Sanati, Mehri
    Effects of fly ashes on Pt-Rh/MgAl(O) catalyst for the upgrading of the product gas from biomass gasification2007In: 15th European Biomass Conference & Exhibition, 2007, p. 1197-1200Conference paper (Refereed)
  • 11.
    Brandin, Jan
    et al.
    Växjö University, Faculty of Mathematics/Science/Technology, School of Technology and Design. Bioenergiteknik.
    Einvall, Jessica
    Bioenergiteknik.
    Sanati, Mehri
    Effects of H2S and fly ash on Ni based catalyst for the reforming of a product gas from biomass gasification:2007In: Europacat VIII, 2007Conference paper (Refereed)
  • 12.
    Brandin, Jan
    et al.
    Växjö University, Faculty of Mathematics/Science/Technology, School of Technology and Design. Bioenergiteknik.
    Einvall, Jessica
    Växjö University, Faculty of Mathematics/Science/Technology, School of Technology and Design. Bioenergiteknik.
    Sanati, Mehri
    Study of the deactivation of a Ni based catalyst for the reforming of a product gas from biomass gasification2007In: Europacat VIII, 2007Conference paper (Refereed)
  • 13.
    Brandin, Jan
    et al.
    Växjö University, Faculty of Mathematics/Science/Technology, School of Technology and Design.
    Einvall, Jessica
    Växjö University, Faculty of Mathematics/Science/Technology, School of Technology and Design.
    Sanati, Mehri
    The technical feasibility of biomass gasification for hydrogen production2005In: Catalysis Today, ISSN 0920-5861, E-ISSN 1873-4308, Vol. 106, no 1-4, p. 297-300Article in journal (Refereed)
    Abstract [en]

    Biomass gasification for energy or hydrogen production is a field in continuous evolution, due to the fact that biomass is a renewable and CO2 neutral source. The ability to produce biomass-derived vehicle fuel on a large scale will help to reduce greenhouse gas and pollution, increase the security of European energy supplies, and enhance the use of renewable energy. The Värnamo Biomass Gassification Centre in Sweden is a unique plant and an important site for the development of innovative technologies for biomass transformation. At the moment, the Värnamo plant is the heart of the CHRISGAS European project, that aims to convert the produced gas for further upgrading to liquid fuels as dimethyl ether (DME), methanol or Fischer–Tropsch (F–T) derived diesel. The present work is an attempt to highlight the conditions for the reforming unit and the problems related to working with streams having high contents of sulphur and alkali metals.

  • 14.
    Brandin, Jan
    et al.
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Hulteberg, Christain
    Kusar, Henrik
    Kungliga tekniska högskolan.
    A review of thermo-chemical conversion of biomass into biofuels: focusing on gas cleaning and up-grading process steps2017Report (Other (popular science, discussion, etc.))
    Abstract [en]

    It is not easy to replace fossil-based fuels in the transport sector, however, an appealing solution is to use biomass and waste for the production of renewable alternatives. Thermochemical conversion of biomass for production of synthetic transport fuels by the use of gasification is a promising way to meet these goals.

    One of the key challenges in using gasification systems with biomass and waste as feedstock is the upgrading of the raw gas produced in the gasifier. These materials replacing oil and coal contain large amounts of demanding impurities, such as alkali, inorganic compounds, sulphur and chlorine compounds. Therefore, as for all multi-step processes, the heat management and hence the total efficiency depend on the different clean-up units. Unfortunately, the available conventional gas filtering units for removing particulates and impurities, and also subsequent catalytic conversion steps have lower optimum working temperatures than the operating temperature in the gasification units.

    This report focuses on on-going research and development to find new technology solutions and on the key critical technology challenges concerning the purification and upgrading of the raw gas to synthesis gas and the subsequent different fuel synthesis processes, such as hot gas filtration, clever heating solutions and a higher degree of process integration as well as catalysts more resistant towards deactivation. This means that the temperature should be as high as possible for any particular upgrading unit in the refining system. Nevertheless, the temperature and pressure of the cleaned synthesis gas must meet the requirements of the downstream application, i.e. Fischer-Tropsch diesel or methanol.

    Before using the gas produced in the gasifier a number of impurities needs to be removed. These include particles, tars, sulphur and ammonia. Particles are formed in gasification, irrespective of the type of gasifier design used. A first, coarse separation is performed in one or several cyclone filters at high temperature. Thereafter bag-house filters (e.g. ceramic or textile) maybe used to separate the finer particles. A problem is, however, tar condensation in the filters and there is much work performed on trying to achieve filtration at as high a temperature as possible.

    The far most stressed technical barriers regarding cleaning of the gases are tars. To remove the tar from the product gas there is a number of alternatives, but most important is that the gasifier is operated at optimal conditions for minimising initial tar formation. In fluid bed and entrained flow gasification a first step may be catalytic tar cracking after particle removal. In fluid bed gasification a catalyst, active in tar cracking, may be added to the fluidising bed to further remove any tar formed in the bed. In this kind of tar removal, natural minerals such as dolomite and olivine, are normally used, or catalysts normally used in hydrocarbon reforming or cracking. The tar can be reformed to CO and hydrogen by thermal reforming as well, when the temperature is increased to 1300ºC and the tar decomposes. Another method for removing tar from the gas is to scrub it by using hot oil (200-300ºC). The tar dissolves in the hot oil, which can be partly regenerated and the remaining tar-containing part is either burned or sent back to the gasifier for regasification.

    Other important aspects are that the sulphur content of the gas depends on the type of biomass used, the gasification agent used etc., but a level at or above 100 ppm is not unusual. Sulphur levels this high are not acceptable if there are catalytic processes down-stream, or if the emissions of e.g. SO2 are to be kept down. The sulphur may be separated by adsorbing it in ZnO, an irreversible process, or a commercially available reversible adsorbent can be used. There is also the possibility of scrubbing the gas with an amine solution. If a reversible alternative is chosen, elementary sulphur may be produced using the Claus process.

    Furthermore, the levels of ammonia formed in gasification (3,000 ppm is not uncommon) are normally not considered a problem. When combusting the gas, nitrogen or in the worst case NOx (so-called fuel NOx) is formed; there are, however, indications that there could be problems. Especially when the gasification is followed by down-stream catalytic processes, steam reforming in particular, where the catalyst might suffer from deactivation by long-term exposure to ammonia.

    The composition of the product gas depends very much on the gasification technology, the gasifying agent and the biomass feedstock. Of particular significance is the choice of gasifying agent, i.e. air, oxygen, water, since it has a huge impact on the composition and quality of the gas, The gasifying agent also affects the choice of cleaning and upgrading processes to syngas and its suitability for different end-use applications as fuels or green chemicals.

    The ideal upgraded syngas consists of H2 and CO at a correct ratio with very low water and CO2 content allowed. This means that the tars, particulates, alkali salts and inorganic compounds mentioned earlier have to be removed for most of the applications. By using oxygen as the gasifying agent, instead of air, the content of nitrogen may be minimised without expensive nitrogen separation.

    In summary, there are a number of uses with respect to produced synthesis gas. The major applications will be discussed, starting with the production of hydrogen and then followed by the synthesis of synthetic natural gas, methanol, dimethyl ether, Fischer-Tropsch diesel and higher alcohol synthesis, and describing alternatives combining these methods. The SNG and methanol synthesis are equilibrium constrained, while the synthesis of DME (one-step route), FT diesel and alcohols are not. All of the reactions are exothermal (with the exception of steam reforming of methane and tars) and therefore handling the temperature increase in the reactors is essential. In addition, the synthesis of methanol has to be performed at high pressure (50-100 bar) to be industrially viable.

    There will be a compromise between the capital cost of the whole cleaning unit and the system efficiency, since solid waste, e.g. ash, sorbents, bed material and waste water all involve handling costs. Consequently, installing very effective catalysts, results in unnecessary costs because of expensive gas cleaning; however the synthesis units further down-stream, especially for Fischer-Tropsch diesel, and DME/methanol will profit from an effective gas cleaning which extends the catalysts life-time. The catalyst materials in the upgrading processes essentially need to be more stable and resistant to different kinds of deactivation.

    Finally, process intensification is an important development throughout chemical industries, which includes simultaneous integration of both synthesis steps and separation, other examples are advanced heat exchangers with heat integration in order to increase the heat transfer rates. Another example is to combine exothermic and endothermic reactions to support reforming reactions by using the intrinsic energy content. For cost-effective solutions and efficient application, new solutions for cleaning and up-grading of the gases are necessary.

  • 15.
    Brandin, Jan
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Engineering.
    Hulteberg, Christian
    Biofuel-Solution AB, Limhamn .
    Multi-function catalysts for glycerol upgrading2010Conference paper (Other academic)
    Abstract [en]

    During the last three years Biofuel-Solution, a privately held Swedish entity, has developed an IP-portfolio around gas-phase glycerol conversion into medium-value chemicals. The targeted chemicals have large to very large markets, to allow for use by more than a fraction of the glycerol available today without impacting the cost of the product. The reason behind is that glycerol is a by-product from the biofuel industry, including biodiesel and bioethanol. This indicates large production volumes, even though the glycerol is a fraction of the fuel produced. A by-product from any fuel process will be vast and therefore any chemical produced from this side-product will have to have a large market to offset it to. In order to avoid changing the fundamental market behavior, similar to what the biodiesel industry has done to the glycerol market.

    In the course of this work, several end-products have been targeted. These include plastic monomers, mono-alcohols and energy gases; using acrolein as a common starting point. To produce chemicals with high purity and efficiency, selective and active catalysts are required. For instance, a process for producing propionaldehyde and n-propanol has been developed to the point of demonstration and commercialization building on the gas-phase platform.

    By developing multi-function catalysts which perform more than one task simultaneously, synergies can be reached that cannot be achieved with traditional catalysts. For instance, by combining catalyst functionalities, reactions that are both endothermic and exothermic can be performed simultaneously.

    This mean lower inlet reactor temperatures (in this particular case) and a more even temperature distribution. By performing the dehydration of glycerol to acrolein in combination with another, exothermal reaction by-products can be suppressed and yields increased.

    It also means that new reaction pathways can be achieved, allowing for new ways to produce chemicals and fuels from glycerol. As in the case of ethane production from acrolein, where a catalyst surface has been devised where acrolein is first adsorbed. The actual mechanism is unknown but in speculation, the adsorbed acrolein is decarbonyled into ethylene and carbon monoxide on a first reaction site. The formed carbon monoxide diffuses to another active site, where it reacts with water through the so called water-gas shift reaction to carbon dioxide and hydrogen. Said carbon dioxide leaves as an end-product, and the hydrogen diffuses to another active site where it reacts with ethylene to form ethane. This gives a way of producing energy gases from glycerol in a very compact reactor set-up, effectively reducing footprint and capital cost and increasing productivity of an installation.

  • 16.
    Brandin, Jan
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Engineering.
    Hulteberg, Christian
    Biofuel-Solution AB, Malmö.
    Levaue, Andreas
    Biofuel-Solution AB, Malmö.
    Green LPG2010Report (Other academic)
    Abstract [en]

    The use of energy gases with renewable origins will become important with diminishing fossil resources. This as the infrastructure of the gaseous fuels is well built out and the distribution networks already exist. LPG is one of the most versatile fuels around, perfect for rural areas and in many other applications. The fossil origin of the fuel will, in today’s climate and environmental debate, however position it as a thing of the past and not part of the future energy supply. The technology and development performed under this and previous programs with the Swedish Gas Centre will however suggest a way to bridge this conception and make LPG a part of the future energy mix. A good starting point for two and three carbon energy gases is glycerine, with its three carbon backbone. The reason for focusing on glycerine is its benign chemical nature, it is:• Harmless from a toxic standpoint• Chemically inert• Non-corrosive• Relatively high energy density• Zero carbon dioxide emissions It is also readily available as the production of biofuels (from which glycerine is a sideproduct) in the world has increased markedly over the last 10 year period. This glut in the glycerol production has also lowered worldwide prices of glycerine.Since the key step in producing energy gases from glycerol is the dehydration of glycerol to acrolein, this step has attracted much attention during the development work. The step has been improved during the performed work and the need for any regeneration of the catalyst has been significantly reduced, if not omitted completely. This improvement allows for a simple fixed bed reactor design and will save cost in reactor construction as well as in operating costs of the plant. The same conclusion can be drawn from the combination of the two functionalities (dehydration and hydrogenation) in designing a catalyst that promote the direct reaction of 1-propanol to propane in one step instead of two. The experiments with the decarbonylation of acrolein to form ethane show that the catalyst deactivation rates are quite rapid. The addition of noble metal to the catalyst seems to improve the longevity of the catalyst, but the coking is still too severe to provide for a commercially viable process. It is believed that there is a possible way forward for the decarbonylation of acrolein to ethane; it will however require additional time and resources spent in this area. In this work it has been shown that all of the catalytic steps involved in the production of propane from glycerol have sufficient longterm stability and endurance and it is motivated to recommend that the project continues to pilot plant testing stage.

  • 17.
    Brandin, Jan
    et al.
    Linnaeus University, Faculty of Technology, Department of Building and Energy Technology.
    Hulteberg, Christian
    Lunds Tekniska Högskola .
    Leveau, Andreas
    Biofuel-Solutions AB.
    Selective Catalysts for Glycerol Dehydration2013In: CRS-2, Catalysis for Renewable Sources: Fuel,Energy,ChemicalsBook of Abstracts / [ed] Vadim Yakovlev, Boreskov Institute of Catalysis, Novosibirsk, Russia: Boreskov Institute of Catalysis , 2013, p. 17-18Conference paper (Refereed)
    Abstract [en]

     There has been an increased interest over the last decade for replacing fossil based feedstock’s with renewable ones. There are several such feedstock’s that are currently being investigated such as cellulose, lignin, hemicellulose, triglycerides etc. However, when trying to perform selective reactions an as homogeneous feedstock as possible is preferable. One such feedstock example is glycerol, a side-product from biofuels production, which is a tri-alcohol and thus has much flexibility for reactions, e.g. dehydration, hydrogenation, addition reactions etc. Glycerol in itself is a good starting point for fine chemicals production being non-toxic and available in rather large quantities [1-2]. A key reaction for glycerol valorisation is the dehydration of glycerol to form acrolein, an unsaturated C3 aldehyde, which may be used for producing acrylic acid, acrylonitrile and other important chemcial products. It has recently been shown that pore-condensation of glycerol is an issue under industrial like conditions, leading to liquid-phase reactions and speeding up the catalyst activity and selectivity loss [3]. To address this issue, modified catalyst materials have been prepared where the relevant micro and meso pores have been removed by thermal sintering; calculations have shown that pores below 45 Å may be subject to pore condensation. The catalyst starting material was a 10% WO3 by weight supported on ZrO2 in the form of beads 1–2 mm and it was thermally treated at 400°C, 500°C, 600°C, 700°C, 700°C, 800°C, 850°C, 900°C and 1000°C for 2 hours. The catalysts were characterised using nitrogen adsorption, mercury intrusion porosimetry (MIP), Raman spectroscopy and ammonia temperature programmed desorption. The thermal sintered catalysts show first of all a decreasing BET surface area with sintering commencing between 700°C and 800°C when it decreases from the initial 71 m2/g to 62 m2/g and at 1000°C there is a mere 5 m2/g of surface area left. During sintering, the micro and meso-porosity is reduced as evidenced by MIP and depicted in figure 1. As may be seen in the figure, sintering decrease the amount of pores below and around 100 Å is reduced at a sintering temperature of 800°C and above. The most suitable catalyst based on the MIP appears to be the one sintered at 850°C which is further strengthened by the Raman analysis. There is a clear shift in the tungsten structure from monoclinic to triclinic between 850°C and 900°C and it is believed that the monoclinic phase is important for activity and selectivity. Further, the heat treatment shows that there is an increase in catalyst acidity measured as mmol NH3/(m2/g) but a decrease in the acid strength as evidenced by a decrease in the desorption peak maximum temperature.

     

  • 18.
    Brandin, Jan
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Engineering.
    Hulteberg, Christian
    Lund University.
    Odenbrand, Ingemar
    Lund University.
    High-temperature and high concentration SCR of NO with NH3: application in a CCS process for removal of carbon dioxide2012In: Chemical Engineering Journal, ISSN 1385-8947, E-ISSN 1873-3212, Vol. 191, p. 218-227Article in journal (Refereed)
    Abstract [en]

    This study investigates several commercial selective catalytic reduction (SCR) catalysts (A–E) for application in a high-temperature (approximately 525 °C) and high-concentration (5000 ppm NO) system in combination with CO2 capture. The suggested process for removing high concentrations of NOx seems plausible and autothermal operation is possible for very high NO concentrations. A key property of the catalyst in this system is its thermal stability. This was tested and modelled with the general power law model using second-order decay of the BET surface area with time. Most of the materials did not have very high thermal stability. The zeolite-based materials could likely be used, but they too need improved stability. The SCR activity and the possible formation of the by-product N2O were determined by measurement in a fixed-bed reactor at 300–525 °C. All materials displayed sufficiently high activity for a designed 96% conversion in the twin-bed SCR reactor system proposed. The amount of catalyst needed varied considerably and was much higher for the zeolithic materials. The formation of N2O increased with temperature for almost all materials except the zeolithic ones. The selectivity to N2 production at 525 °C was 98.6% for the best material and 95.7% for the worst with 1000 ppm NOx in the inlet; at 5000 ppm NOx, the values were much better, i.e., 98.3 and 99.9%, respectively.

  • 19.
    Brandin, Jan
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Engineering.
    Liliedahl, Truls
    Royal Institute of Technology.
    Unit operations for production of clean hydrogen-rich synthesis gas from gasified biomass2011In: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 35, no Supplement 1, p. S8-S15Article in journal (Refereed)
    Abstract [en]

    The rebuild of the Växjö Värnamo Biomass Gasification Center (VVBGC) integrated gasification combined cycle (IGCC) plant into a plant for production of a clean hydrogen rich synthesis gas requires an extensive adaptation of conventional techniques to the special chemical and physical needs found in a gasified biomass environment. The CHRISGAS project has, in a multitude of areas, been responsible for the research and development activities associated with the rebuild. In this paper the present status and some of the issues concerning the upgrading of the product gas from gasified biomass into synthesis gas are addressed. The purpose is to serve as an introduction to the scientific papers written by the partners in the consortium concerning the unit operations of the process.

  • 20.
    Brandin, Jan
    et al.
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Odenbrand, Ingemar
    Lund university.
    Deactivation and Characterization of SCR Catalysts Used in Municipal Waste Incineration Applications2018In: Catalysis Letters, ISSN 1011-372X, E-ISSN 1572-879X, Vol. 148, no 1, p. 312-327Article in journal (Refereed)
    Abstract [en]

    Catalysts used for selective catalytic reduction were deactivated for various times in a slipstream from a municipal solid waste incineration plant and then characterized. The activity for NO reduction with NH3 was measured. The Brunauer–Emmett–Teller surface areas were determined by N2 adsorption from which the pore size distributions in the mesopore region were obtained. Micropore areas and volumes were also obtained. The composition of fresh and deactivated catalysts as well as fly ash was determined by atomic absorption spectroscopy and scanning electron microscopy with energy dispersive X-ray analysis. The changes in surface area (8% decrease in BET surface area over 2311 h) and pore structure were small, while the change in activity was considerable. The apparent pre-exponential factor was 1.63 × 105 (1/min) in the most deactivated catalyst, compared to 2.65 × 106 (1/min) in the fresh catalyst, i.e. a reduction of 94%. The apparent activation energy for the fresh catalyst was 40 kJ/mol, decreasing to 27 kJ/mol with increasing deactivation. Characterization showed that catalytic poisoning is mainly due to decreased acidity of the catalyst caused due to increasing amounts of Na and K.

  • 21.
    Brandin, Jan
    et al.
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Odenbrand, Ingemar
    Lund University .
    Poisoning of SCR Catalysts used in Municipal Waste Incineration Applications2017In: Topics in catalysis, ISSN 1022-5528, E-ISSN 1572-9028, Vol. 60, no 17-18, p. 1306-1316Article in journal (Refereed)
    Abstract [en]

    A commercial vanadia, tungsta on titania SCRcatalyst was poisoned in a side stream in a waste incinerationplant. The effect of especially alkali metal poisoningwas observed resulting in a decreased activity at long timesof exposure. The deactivation after 2311 h was 36% whilethe decrease in surface area was only 7.6%. Thus the majorcause for deactivation was a chemical blocking of acidicsites by alkali metals. The activation–deactivation modelshowed excellent agreement with experimental data. Themodel suggests that the original adsorption sites, fromthe preparation of the catalyst, are rapidly deactivated butare replaced by a new population of adsorption sites dueto activation of the catalyst surface by sulphur compounds(SO2, SO3)in the flue gas.

  • 22.
    Brandin, Jan
    et al.
    Växjö University, Faculty of Mathematics/Science/Technology, School of Technology and Design.
    Sanati, Mehri
    Hydrogen rich synthesis gas production from gasified biomass.2005Conference paper (Other (popular science, discussion, etc.))
  • 23.
    Brandin, Jan
    et al.
    Växjö University, Faculty of Mathematics/Science/Technology, School of Technology and Design.
    Sanati, Mehri
    Växjö University, Faculty of Mathematics/Science/Technology, School of Technology and Design.
    Synthesis gas from gasified biomass for vehicle fuel production2006Conference paper (Other (popular science, discussion, etc.))
  • 24.
    Brandin, Jan
    et al.
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Strand, Michael
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Ali, Sharafat
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Aerosolkatalysatorer för industriell gasrening2016Report (Refereed)
    Abstract [en]

    Aerosol catalysts – small particles (with aerodynamic diameter up to 100 m) of catalytically active material suspended in gas – were examined for the intended use of NOx reduction with ammonia (SCR) in smaller industrial plants and boilers as an alternative to SNCR. The aerosol particles are intended to be injected into the flue gas at high temperature, together with ammonia/urea, and then separated on a particulate filter (bag‐type filter) at low temperature. The NOx reduction can occur during the pneumatic transport in the boiler or/and on the catalytically active filter cake. The catalysts must have sufficiently high activity in order to keep down their consumption, they must be cheap enough to be used as a consumable item, and must be harmless to humans and the environment. Two materials were developed during the work as possible candidates: natural zeolites and a FeSO4/activated carbon‐based catalyst. Cost estimates, for a hypothetical 1 MWth plant, shows that a NOx reduction close to 50% economically justify the introduction of SNCR for small plants (<25 GWh, NOx reductions levels between 30‐50% and 2 in stoichiometric ratio), both for the use of urea and liquid anhydrous ammonia with the percent NOx fee of 50 SEK/kg. The result is modest, at best 15‐20% cost reduction compared to no action. Raised tariffs to 60 SEK/kg NOx will improved the situation, but the results are still modest. When the aerosol catalysts was used in the cost estimate, and an assumed NOx reduction degree of 85% was supposed to be reached, good results were obtained at low catalyst costs (0.5‐2 SEK/kg). However the plant can handle at most a cost of 4 SEK/kg. Estimated cost for the aerosol catalyst is in the range of 10 SEK/kg. In order to be economically attractive, the catalyst should be recycled, thereby lowering the cost of catalyst consumption.

  • 25.
    Brandin, Jan
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Engineering.
    Tunér, Martin
    Lunds Tekniska Högskola.
    Odenbrand, Ingemar
    Lunds Tekniska Högskola.
    Small Scale Gasifiction: Gas Engine CHP for Biofuels2011Report (Other academic)
    Abstract [en]

    In a joint project, Linnaeus University in Växjö (LNU) and the Faculty of Engineering at Lund University (LTH) were commissioned by the Swedish Energy Agency to make an inventory of the techniques and systems for small scale gasifier-gas engine combined heat and power (CHP) production and to evaluate the technology. Small scale is defined here as plants up to 10 MWth, and the fuel used in the gasifier is some kind of biofuel, usually woody biofuel in the form of chips, pellets, or sawdust. The study is presented in this report.

    The report has been compiled by searching the literature, participating in seminars, visiting plants, interviewing contact people, and following up contacts by e-mail and phone.

    The first, descriptive part of the report, examines the state-of-the-art technology for gasification, gas cleaning, and gas engines. The second part presents case studies of the selected plants:

    • Meva Innovation’s VIPP-VORTEX CHP plant
    • DTU’s VIKING CHP plant
    • Güssing bio-power station
    • Harboøre CHP plant
    • Skive CHP plant

    The case studies examine the features of the plants and the included unit operations, the kinds of fuels used and the net electricity and overall efficiencies obtained. The investment and operating costs are presented when available as are figures on plant availability. In addition we survey the international situation, mainly covering developing countries.

    Generally, the technology is sufficiently mature for commercialization, though some unit operations, for example catalytic tar reforming, still needs further development. Further development and optimization will probably streamline the performance of the various plants so that their biofuel-to-electricity efficiency reaches 30-40 % and overall performance efficiency in the range of 90 %.

    The Harboøre, Skive, and Güssing plant types are considered appropriate for municipal CHP systems, while the Viking and VIPP-VORTEX plants are smaller and considered appropriate for replacing hot water plants in district heating network. The Danish Technical University (DTU) Biomass Gasification Group and Meva International have identified a potentially large market in the developing countries of Asia.

    Areas for suggested further research and development include:

    • Gas      cleaning/upgrading
    • Utilization      of produced heat
    • System      integration/optimization
    • Small scale      oxygen production
    • Gas engine      developments
  • 26.
    Einvall, Jessica
    et al.
    Växjö University, Faculty of Mathematics/Science/Technology, School of Technology and Design.
    Albertazzi, Simone
    Bologna University, Italy.
    Hulteberg, Christian
    Catator AB.
    Malik, Azhar
    Växjö University, Faculty of Mathematics/Science/Technology, School of Technology and Design.
    Basile, Francesco
    Bologna University, Italy.
    Larsson, Ann-Charlotte
    Växjö University, Faculty of Mathematics/Science/Technology, School of Technology and Design.
    Brandin, Jan
    Catator AB.
    Sanati, Mehri
    Växjö University, Faculty of Mathematics/Science/Technology, School of Technology and Design.
    Investigation of reforming catalyst deactivation by exposure to fly ash from biomass gasification in laboratory scale2007In: Energy & Fuels, ISSN 0887-0624, E-ISSN 1520-5029, Vol. 21, no 5, p. 2481-2488Article in journal (Refereed)
    Abstract [en]

    Production of synthesis gas by catalytic reforming of product gas from biomass gasification can lead to catalyst deactivation by the exposure to ash compounds present in the flue gas. The impact of fly ash from biomass gasification on reforming catalysts was studied at the laboratory scale. The investigated catalyst was Pt/Rh based, and it was exposed to generated K2SO4 aerosol particles and to aerosol particles produced from the water-soluble part of biomass fly ash, originating from a commercial biomass combustion plant. The noble metal catalyst was also compared with a commercial Ni-based catalyst, exposed to aerosol particles of the same fashion. To investigate the deactivation by aerosol particles, a flow containing submicrometer-size selected aerosol particles was led through the catalyst bed. The particle size of the poison was measured prior to the catalytic reactor system. Fresh and aerosol particle exposed catalysts were characterized using BET surface area, XRPD (X-ray powder diffraction), and H2 chemisorption. The Pt/Rh catalyst was also investigated for activity in the steam methane reforming reaction. It was found that the method to deposit generated aerosol particles on reforming catalysts could be a useful procedure to investigate the impact of different compounds possibly present in the product gas from the gasifier, acting as potential catalyst poisons. The catalytic deactivation procedure by exposure to aerosol particles is somehow similar to what happens in a real plant, when a catalyst bed is located subsequent to a biomass gasifier or a combustion boiler. Using different environments (oxidizing, reducing, steam present, etc.) in the aerosol generation adds further flexibility to the suggested aerosol deactivation method. It is essential to investigate the deactivating effect at the laboratory scale before a full-scale plant is taken into operation to avoid operational problems.

  • 27.
    Einvall, Jessica
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Engineering.
    Parsland, Charlotte
    Linnaeus University, Faculty of Science and Engineering, School of Engineering.
    Benito, Patricia
    University of Bologna.
    Basile, Francesco
    University of Bologna.
    Brandin, Jan
    Linnaeus University, Faculty of Science and Engineering, School of Engineering.
    High temperature water-gas shift step in the production of clean hydrogen rich synthesis gas from gasified biomass2011In: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 35, no Supplement 1, p. S123-S131Article in journal (Refereed)
    Abstract [en]

    The possibility of using the water-gas shift (WGS) step for tuning the H2/CO-ratio in synthesis gas produced from gasified biomass has been investigated in the CHRISGAS (Clean Hydrogen Rich Synthesis Gas) project. The synthesis gas produced will contain contaminants such as H2S, NH3 and chloride components. As the most promising candidate FeCr catalyst, prepared in the laboratory, was tested. One part of the work was conducted in a laboratory set up with simulated gases and another part in real gases in the 100 kW Circulating Fluidized Bed (CFB) gasifier at Delft University of Technology. Used catalysts from both tests have been characterized by XRD and N2 adsoption/desorption at −196 °C.

    In the first part of the laboratory investigation a laboratory set up was built. The main gas mixture consisted of CO, CO2, H2, H2O and N2 with the possibility to add gas or water-soluble contaminants, like H2S, NH3 and HCl, in low concentration (0–3 dm3 m−3). The set up can be operated up to 2 MPa pressure at 200–600 °C and run un-attendant for 100 h or more. For the second part of the work a catalytic probe was developed that allowed exposure of the catalyst by inserting the probe into the flowing gas from gasified biomass.

    The catalyst deactivates by two different causes. The initial deactivation is caused by the growth of the crystals in the active phase (magnetite) and the higher crystallinity the lower specific surface area. The second deactivation is caused by the presence of catalytic poisons in the gas, such as H2S, NH3 and chloride that block the active surface.

    The catalyst subjected to sulphur poisoning shows decreased but stable activity. The activity shows strong decrease for the ammonia and HCl poisoned catalysts. It seems important to investigate the levels of these compounds before putting a FeCr based shift step in industrial operation. The activity also decreased after the catalysts had been exposed to gas from gasified biomass. The exposed catalysts are not re-activated by time on stream in the laboratory set up, which indicates that the decrease in CO2-ratio must be attributed to irreversible poisoning from compounds present in the gas from the gasifier.

    It is most likely that the FeCr catalyst is suitable to be used in a high temperature shift step, for industrial production of synthesis gas from gasified biomass if sulphur is the only poison needed to be taken into account. The ammonia should be decomposed in the previous catalytic reformer step but the levels of volatile chloride in the gas at the shift step position are not known.

  • 28.
    Gavrilovic, Ljubisa
    et al.
    Norwegian University of Science and technology (NTNU), Trondheim, Norway.
    Blekkan, Ed Anders
    Norwegian University of Science and technology (NTNU), Trondheim, Norway.
    Venvik, H.J.
    Norwegian University of Science and technology (NTNU), Trondheim, Norway.
    Holmen, Anders
    Norwegian University of Science and technology (NTNU), Trondheim, Norway.
    Brandin, Jan
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Influence of potassium species on Co based Fischer-Tropsch-catalyst.2016Conference paper (Refereed)
    Abstract [en]

    1. Introduction

    The purpose of this work is better understanding of the alkali influence on Co-based F-T catalyst. Since potassium is one of the elements that can be present in syngas from biomass[1], one of the questions is how potassium species affect the Co catalyst. From previous work it has been shown that alkali species act as poisons, thus deactivating catalysts[2]. Most previous work in this group[3][4] and by others[5] has concerned Co catalysts that were exposed to potassium species by incipient wetness impregnation, which is essentially different from the real behaviour during the gasification process where the species will mainly be in the vapor phase. In the present work we study potassium influence on a Co-based catalyst, using aerosol technology as a new method for potassium deposition on the Co surface.

     

    2. Experimental

    4 different potassium salts were deposited using aerosol deposition on 20%Co/0.5%Re/γAl2O3. The amount of potassium salts deposited were determined using ICP analysis. Potassium salts were chosen from studies of the gases from biomass gasification[6]. These are K2SO4, KCl, KNO3 and K2CO3. KNO3 will be reduced to KOH during biomass gasification, but since in these experiments temperature was not so high and there was no H2/CO, most likely KNO3 will be deposited as such on the Co surface.

    BET N2 adsorption, H2 chemisorption, temperature programmed reduction (TPR) were used to characterize all the poisoned catalysts.

    Fischer Tropsch activity and selectivity measurements were performed at the in house build set-up, at 210°C, 20 bar and at H2:CO ratio of 2.1. The GHSV was consistently varied to maintain comparable CO conversion levels between 20-50%. A detailed description of the setup and procedures can be found elsewhere[3].

     

    3. Results

    The potassium species were deposited using aerosol technology in the apparatus shown in Fig. 1. Potassium salts are dissolved in deionized water and the solution is placed inside the atomizer, which produces aerosol particles. Nitrogen is used as a carrier gas which forces aerosol particles in the reactor direction. Before entering the reactor, the gas mixture carrying the aerosol is passing the impaction vessel to remove large particles. The catalyst bed is placed in the middle of the reactor, which can be heated up to 800°C. The generated aerosol particles were physically characterized according to their electrical mobility using a scanning mobility particle sizer (SMPS) consisting of a differential mobility analyser (DMA) and a condensation particle counter (CPC)[7]. The three target concentrations of potassium salts,  200 ppm, 800 ppm and 4000 ppm,  were monitored by the above-mentioned instruments.

    Results from characterization by elemental analysis, H2 chemisorption, BET surface area, TPR together with the results from the Fischer Tropsch synthesis i.e. CO conversion, selectivity, and activity will be compared with the same catalyst without any poison and also with previous results obtained from solution impregnation of the same poisons[8][3][9].

    4. Discussion

    The purpose of the work is to study how this procedure of poisoning Co catalyst with aerosol particles will affect catalyst performances during Fischer Tropsch reaction. Previous similar work on Ni catalyst in the SCR reaction using aerosol technology as a method of deposition, has proven loss in metallic surface area, decreasing of metal dispersion and severe reduction in the catalytic activity [7]. The idea is to develop a technique to transfer potassium species, and potentially other relevant impurities, in vapor phase to the catalyst surface. This new approach can to a great extent simulate behaviour during the real industrial process. The aerosol could better represent in situ poisoning and therefore give a more realistic picture of the effect of potassium. This knowledge will be useful for designing new BTL processes.

     

    5. Conclusion

    Aerosol technology was used as a new method for depositing potassium salts on the Co surface. Poisoned catalysts were tested in Fischer Tropsch synthesis reactor together with elemental analysis. Results are compared to the reference catalyst and with previous work which use IWI as poisoning method.

     

     

    6. References

    [1]       A. Norheim, D. Lindberg, J. E. Hustad, and R. Backman, Energy and Fuels, (2009)

    [2]       E. S. Wangen, A. Osatiashtiani, and E. A. Blekkan, Top. Catal., (2011)

    [3]       C. M. Balonek, A. H. Lillebø, S. Rane, E. Rytter, L. D. Schmidt, and A. Holmen, Catal. Letters, (2010)

    [4]       E. A. Blekkan, A. Holmen, S. Vada, Acta Chem. Scand., (1993)

    [5]       J. Gaube and H. F. Klein, Appl. Catal. A Gen., (126–132, 2008)

    [6]       H. M. Westberg, M. Byström, and B. Leckner, Energy and Fuels, (18–28, 2003)

    [7]       S. Albertazzi, F. Basile, J. Brandin, J. Einvall, G. Fornasari, C. Hulteberg, M. Sanati, F. Trifirò, and A. Vaccari, Biomass and Bioenergy, (2008)

    [8]       A. H. Lillebø, E. Patanou, J. Yang, E. A. Blekkan, and A. Holmen, in Catalysis Today, (2013)

    [9]       E. Patanou, A. H. Lillebø, J. Yang, D. Chen, A. Holmen, and E. A. Blekkan, Ind. Eng. Chem. Res., (2014)

    [10]     J. Einvall, S. Albertazzi, C. Hulteberg, A. Malik, F. Basile, A. C. Larsson, J. Brandin, and M. Sanati, Energy and Fuels, (2007)

  • 29.
    Gavrilovic, Ljubisa
    et al.
    Norwegian University of Science and Technology, Norway.
    Blekkan, Edd
    Norwegian University of Science and Technology, Norway.
    Holmen, Anders
    Norwegian University of Science and Technology, Norway.
    Venvik, Hilde
    Norwegian University of Science and Technology, Norway.
    Brandin, Jan
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Fischer-Tropsch Synthesis: Investigation of CO catalyst by exposure to aerosol particles of potassium salts2015In: Norwegian Catalyst Symposium 2015, 2015Conference paper (Refereed)
  • 30.
    Gavrilovic, Ljubisa
    et al.
    Norwegian University of Science and Technology, Norway.
    Brandin, Jan
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Holmen, Anders
    Norwegian University of Science and Technology, Norway.
    Venvik, Hilde
    Norwegian University of Science and Technology, Norway.
    Myrstad, R.
    SINTEF Materials and Chemistry, Norway.
    Blekkan, Edd
    Norwegian University of Science and Technology, Norway.
    Deactivation of Co-based Fischer-Tropsch catalyst by aerosol deposition of potassium salts2018In: Industrial & Engineering Chemistry Research, ISSN 0888-5885, E-ISSN 1520-5045, Vol. 57, no 6, p. 1935-1942Article in journal (Refereed)
    Abstract [en]

    A 20%Co/0.5%Re/γAl2O3 Fischer-Tropsch catalyst was poisoned by four potassium salts (KNO3, K2SO4, KCl, K2CO3) using the aerosol deposition technique, depositing up to 3500 ppm K as solid particles. Standard characterization techniques (H2 Chemisorption, BET, TPR) showed no difference between treated samples and their unpoisoned counterpart. The Fischer-Tropsch activity was investigated at industrially relevant conditions (210 °C, H2:CO = 2:1, 20 bar). The catalytic activity was significantly reduced for samples exposed to potassium, and the loss of activity was more severe with higher potassium loadings, regardless of the potassium salt used. A possible dual deactivation effect by potassium and the counter-ion (chloride, sulfate) is observed with the samples poisoned by KCl and K2SO4. The selectivity towards heavier hydrocarbons (C5+) was slightly increased with increasing potassium loading, while the CH4 selectivity was reduced for all the treated samples. The results support the idea that potassium is mobile under FT conditions. The loss of activity was described by simple deactivation models which imply a strong non-selective poisoning by the potassium species.

  • 31.
    Gavrilovic, Ljubisa
    et al.
    Norwegian University of Science and Technology, Norway.
    Brandin, Jan
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Holmen, Anders
    Norwegian University of Science and technology, Norway .
    Venvik, Hilde
    Norwegan University of Science and technology, Norway.
    Myrstad, Rune
    SINTEF Industry, Norway.
    Blekkan, Edd
    Norwegan University of Science and Technology, Norway.
    Fischer-Tropsch synthesis: Investigation of the deactivation of a Co catalyst by exposure to aerosol particles of potassium salt2018In: Applied Catalysis B: Environmental, ISSN 0926-3373, E-ISSN 1873-3883, Vol. 230, p. 203-209Article in journal (Refereed)
    Abstract [en]

    The influence of potassium species on a Co based Fischer-Tropsch catalyst was investigated using an aerosol deposition technique. This way of poisoning the catalyst was chosen to simulate the actual potassium behaviour during the biomass to liquid (BTL) process utilizing gasification followed by fuel synthesis. A reference catalyst was poisoned with three levels of potassium and the samples were characterized and tested for the Fischer-Tropsch reaction under industrially relevant conditions. None of the conventional characterization techniques applied (H2 Chemisorption, BET, TPR) divulged any difference between poisoned and unpoisoned samples, whereas the activity measurements showed a dramatic drop in activity following potassium deposition. The results are compared to previous results where incipient wetness impregnation was used as the method of potassium deposition. The effect of potassium is quite similar in the two cases, indicating that irrespective of how potassium is introduced it will end up in the same form and on the same location on the active surface. This indicates that potassium is mobile under FTS conditions, and that potassium species are able to migrate to sites of particular relevance for the FT reaction.

  • 32.
    Gavrilovic, Lubisa
    et al.
    Norwegian University of Science and Technology, Norway.
    Brandin, Jan
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Holmen, Anders
    Norwegian University of Science and Technology, Norway.
    Venvik, Hild J.
    Norwegian University of Science and Technology, Norway.
    Myrstad, Rune
    SINTEF Industry, Norway.
    Blekkan, Edd A.
    Norwegian University of Science and Technology, Norway.
    The effect of aerosol-deposited ash components on a cobalt-based Fischer–Tropsch catalyst2019In: Reaction Kinetics, Mechanisms and Catalysis, ISSN 1878-5190, E-ISSN 1878-5204, Vol. 127, no 1, p. 231-240Article in journal (Refereed)
    Abstract [en]

    The effect of ash salts on Co-based Fisher–Tropsch catalysts was studied using an aerosol deposition technique. The major elements in the ash were found to be K, S and Cl. The ash was deposited on a calcined catalyst as dry particles with an average diameter of approx. 350 nm. The loading of ash particles was varied by varying the time of exposure to the particles in a gas stream. Catalyst characterization did not reveal significant differences in cobalt dispersion, reducibility, surface area, pore size, or pore volume between the reference and the catalysts with ash particles deposited. Activity measurements showed that following a short exposure to the mixed ash salts (30 min), there were no significant loss of activity, but a minor change in selectivity of the catalyst . Extended exposure (60 min) led to some activity loss and changes in selectivity. However, extending the exposure time and thus the amount deposited as evidenced by elemental analysis did not lead to a further drop in activity. This behavior is different from that observed with pure potassium salts, and is suggested to be related to the larger size of the aerosol particles deposited. The large aerosol particles used here were probably not penetrating the catalyst bed, and to some extent formed an external layer on the catalyst bed. The ash salts are therefore not able to penetrate to the pore structure and reach the Co active centers, but are mixed with the catalyst and detected in the elemental analysis.

  • 33.
    Hulteberg, Christian
    et al.
    Biofuel-Solution i Malmö AB (Lund University/Chemical engineering).
    Brandin, Jan
    Linnaeus University, Faculty of Science and Engineering, School of Engineering. Biofuel-Solution i Malmö AB.
    A Process for Producing Acrolein2012Patent (Other (popular science, discussion, etc.))
    Abstract [en]

    Disclosed is a process for dehydrating glycerol into acrolein over an acidic catalyst in gas phase in the presence of hydrogen, minimizing side reactions forming carbon deposits on the catalyst.

  • 34.
    Hulteberg, Christian
    et al.
    Biofuel-Solution i Malmö AB ( Lund University/ Chemical Engineering) .
    Brandin, Jan
    Linnaeus University, Faculty of Science and Engineering, School of Engineering. Biofuel-Solution i Malmö AB.
    Method for Hydrogenating 1,2-Unsaturated Carbonylic Compounds2011Patent (Other (popular science, discussion, etc.))
    Abstract [en]

    Disclosed is a method of hydrogenating an1,2-unsaturated carbonylic compound to obtain the corresponding saturated carbonylic compound in the presence of a palladium catalyst with heterogeneous distribution of palladium

  • 35.
    Hulteberg, Christian
    et al.
    Biofuel-solution I Malmö AB (Lund University/ Chemical Engineering).
    Brandin, Jan
    Linnaeus University, Faculty of Science and Engineering, School of Engineering. Biofuel-Solution i Malmö AB.
    Process for Preparing Lower Hydrocarbons from Glycerol2011Patent (Other (popular science, discussion, etc.))
    Abstract [en]

    The present invention relates to a process of preparing hydrocarbons from oxygenated hydrocarbons by use of at least two catalysts.

  • 36.
    Hulteberg, Christian
    et al.
    Biofuel-solution i Malmö AB (Lund University/Chemical Engineering).
    Brandin, Jan
    Linnaeus University, Faculty of Science and Engineering, School of Engineering. Biofuel-solution i Malmö AB.
    Woods, Richard Root
    Primafuel Inc. (US).
    Porter, Brook
    Primafuel inc. (US).
    Gas Phase Process for Monoalcohol Production from Glycerol2008Patent (Other (popular science, discussion, etc.))
    Abstract [en]

    A method of producing short chain alcohols from glycerol generated as a byproduct of biodiesel production is provided.

  • 37.
    Hulteberg, Christian
    et al.
    Lund University.
    Leveau, Andreas
    Biofuel-Solution AB, Limhamn.
    Brandin, Jan
    Biofuel-Solution AB, Limhamn.
    Pore Condensation i Glycerol Dehydration2013In: Topics in catalysis, ISSN 1022-5528, E-ISSN 1572-9028, Vol. 56, no 9-10, p. 813-821Article in journal (Refereed)
    Abstract [en]

    Pore condensation followed by polymerizationis proposed as an explanatory model of several observationsreported in the literature regarding the dehydration ofglycerol to acrolein. The major conclusion is that glycerolpore condensation in the micro- and mesopores, followedby polymerization in the pores, play a role in catalystdeactivation.

  • 38.
    Hulteberg, Christian
    et al.
    Lund University .
    Leveau, Andreas
    Biofuel-Solution AB.
    Brandin, Jan
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Pore Condensation in Glycerol Dehydration: Modification of a Mixed Oxide Catalyst2017In: Topics in catalysis, ISSN 1022-5528, E-ISSN 1572-9028, Vol. 60, no 17-18, p. 1462-1472Article in journal (Refereed)
    Abstract [en]

    Pore condensation has been suggested as an initiator of deactivation in the dehydration of glycerol to acrolein. To avoid potential pore condensation of the glycerol, a series of WO3supported on ZrO2 catalysts have been prepared through thermal sintering, with modified pore systems. It was shown that catalysts heat treated at temperatures above 800 °C yielded suitable pore system and the catalyst also showed a substantial increase in acrolein yield. The longevity of the heat-treated catalysts was also improved, indeed a catalyst heat treated at 850 °C displayed significantly higher yields and lower pressure-drop build up over the 600 h of testing. Further, the catalyst characterisation work gave evidence for a transition from monoclinic to triclinic tungsten oxide between 850 and 900 °C. There is also an increase in acid-site concentration of the heat-treated catalysts. Given the improved catalyst performance after heat-treatment, it is not unlikely that pore condensation is a significant contributing factor in catalyst deactivation for WO3 supported on ZrO2 catalysts in the glycerol dehydration reaction.

  • 39.
    Hulteberg, Christian
    et al.
    Inst. för kemiteknik, LTH, Lund , Sverige.
    Leveau, Andreas
    Hulteberg CH&E, Tygelsjö, Sverige.
    Brandin, Jan
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Reneweble Propane: Tayloring WO3/ZrO2 catalyst for the dehydration of glycerol to acrolein.2016In: Proceedings of the 17th Nordic Symposium on Catalysis: Book of Abstracts / [ed] Ingemar Odenbrand, Christian Hulteberg, 2016, p. 206-207Conference paper (Refereed)
  • 40.
    Hulteberg, Christian
    et al.
    Lund University.
    Odenbrand, Ingemar
    Lund University.
    Gustafson, Johan
    Lund University.
    Brandin, Jan
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Lundgren, Edvin
    Lund University.
    Preface: Special issue of Topics in Catalysis constitutes the Proceedings of the 17th Nordic Symposium of Catalysis2017In: Topics in catalysis, ISSN 1022-5528, E-ISSN 1572-9028, Vol. 60, no 17-18, p. 1275-1275Article in journal (Other academic)
  • 41.
    Häggblad, Robert
    et al.
    Lund University, Sweden.
    Hulteberg, Christian
    Lund University, Sweden.
    Brandin, Jan
    Lund University, Sweden.
    Stabilization and regeneration of CeO2 and CeO2/ZrO2 based Pt catalyst for the water gas shift reaction2005In: COM2005: Fuel cell and hydrogen technologies / [ed] Dave Gosh, Montréal: Canadian Institute of Mining, Metallurgy and Petroleum, 2005, p. 641-655Conference paper (Refereed)
    Abstract [en]

    The article deals with stabilisation and regeneration of CeO2 and CeO2/ZrO2 based Pt water gas shift catalysts, subject to high initial deactivation. The reaction gas species effect on the catalyst deactivation was investigated by H2-TPR. Activity measurements enabled the effect of different promoters, some added to the CeO2 based catalysts and some to the CeO2/ZrO2 based Pt catalysts, to be investigated. The catalysts were also characterised by BET and CO-TPR. Deactivated catalysts activity was restored by using various regeneration methods. Of the two selected carriers the CeO2/ZrO2 based Pt catalyst showed the highest resilience to deactivation. For the two different carriers, CeO2 and CeO2/ZrO2, W and Re were the best promoters when the catalyst was subject to deactivation. Experiments with H2-TPR indicate a fast initial change in the platinum oxides concentration and composition. The CO-TPR was used to make conclusions about the various regeneration effects of water and oxygen on the catalyst. Finally it is suggested that not one deactivation mechanism is possible and which mechanism that dominates is dependant on the catalyst and the reaction gas composition. (Less)

  • 42. Kirm, Ilham
    et al.
    Brandin, Jan
    Växjö University, Faculty of Mathematics/Science/Technology, School of Technology and Design.
    Sanati, Mehri
    Shift catalysts in biomass generated synthesis gas2007In: Topics in catalysis, ISSN 1022-5528, E-ISSN 1572-9028, Vol. 45, no 1-4, p. 31-37Article in journal (Refereed)
    Abstract [en]

    One of the CHRISGAS project objectives is to study the shift catalysts in biomass-generated synthesis gas. The water gas shift reaction is ruled by equilibrium, and the state of the gas can for a given H2/CO ratio be shifted by addition/removal of water, CO2 and/or by a change in the temperature. Stability area in respect to gas composition, sulphur content, pressure and temperature for FeCr shift catalyst has been investigated by thermodynamic equilibrium calculations. The calculations show that carbide formation is favourable in the “Normal water” case without sulphur in the gas. If sulphur is present in the gas, the situation improves due to sulphide formation.

  • 43.
    Meessen, Jo
    et al.
    Stamicarbon (NL).
    Odenbrand, Ingemar
    Lund University/Chemical Engineering.
    Brandin, Jan
    Malmö.
    Process for the reduction of ammonia emissions in a urea manufacturing process2011Patent (Other (popular science, discussion, etc.))
    Abstract [en]

    The present invention relates to a process for removing ammonia from an effluent of an ammonia enriched gaseous stream formed in or downstream the finishing section of a urea manufacturing process, said ammonia enriched gaseous stream comprising 200 mg NH 3 /Nm 3 or less, wherein the ammonia enriched gaseous stream is contacted with an aqueous composition comprising phosphoric acid thereby producing an ammonia enriched liquid effluent, wherein a bleed of the ammonia enriched liquid effluent is subjected to a urea decomposition step. The present invention also relates to a process for producing an ammonium phosphate essentially free of contaminants, said process comprising the following steps: (a) contacting an ammonia enriched gaseous stream comprising 200 mg NH 3 /Nm 3 or less with an aqueous composition comprising phosphoric acid thereby producing an ammonia enriched liquid effluent; and (b) subjecting a bleed of the ammonia enriched liquid effluent to a urea decomposition step.

  • 44. Moradi, Farokhbag
    et al.
    Brandin, Jan
    Växjö University, Faculty of Mathematics/Science/Technology, School of Technology and Design.
    Sohrabi, Morteza
    Faghihi, Mostafa
    Sanati, Mehri
    Växjö University, Faculty of Mathematics/Science/Technology, School of Technology and Design.
    Deactivation of oxidation and SCR catalysts used in flue gas cleaning by exposure to aerosols of high-and low melting point salts, potassium salts and zinc chloride2003In: Applied Catalysis B: Environmental, ISSN 0926-3373, E-ISSN 1873-3883, Vol. 46, no 1, p. 65-76Article in journal (Refereed)
    Abstract [en]

    For the purpose of this deactivation study, Pt- and vanadia supported catalysts were used. The catalysts have been exposed to aerosol particles of inorganic salts, with high- or low melting points. The average diameter of the generated salt particle was kept constant at around 70 nm. The aerosol particle penetration depth for the samples exposed to potassium salt, was 1 μm as measured by scanning electron microscopy (SEM). The corresponding depth for zinc chloride salt (ZnCl2) was 5 μm. In order to validate the dependency of the catalytic decay rate to exposure temperature, Pt/wire-mesh catalyst was treated with potassium chloride at two temperatures, namely 300 and 500 °C. Pt/supported catalyst was also treated with ZnCl2 salt at 190 and 300 °C. The extent of decay was tested in the oxidation of CO for particle treated Pt/wire-mesh samples. The degree of the deactivation for the aerosol particle deactivated vanadia supported catalysts were also examined in the reduction of NOx. When the Pt/wire-mesh catalyst have been exposed to the poisons aerosol particles at higher temperature lead to the strongest deactivation in the CO oxidation. The Pt-supported catalysts that were treated with aerosol particles from potassium carbonate and potassium sulphate revealed a minor deactivation in the CO oxidation reaction. No significant deactivation was observed for the salt treated vanadia supported monolith samples used in selective catalytic reduction (SCR). A slight pronunced deactivation effect appeared when the vanadia supported wire-mesh catalysts were salt treated. Generally, the obtained results in this study do not indicate any correlation between the salt melting point and the degree of catalytic decay. The obtained results indicate that the exposure temperature during the deactivation procedure is the most critical parameter. Also, the higher the exposing temperature the stronger deactivated sample is produced.

  • 45.
    Nørregård, Øyvind
    et al.
    inst. för kemiteknik, LTH, Lund, Sverige.
    Hulteberg, Christian
    inst. för kemiteknik, LTH, Lund Sverige.
    Brandin, Jan
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Leveau, Andreas
    Hulteberg Ch&E, Tygelsjö, Sverige.
    Catalyst choise and considerations in the conversion of Glucose to glycerol.2016In: Proceedings of the 17th Nordic Symposium on Catalysis: Book of Abstracts / [ed] Ingemar Odenbrand, Christian Hulteberg, 2016, p. 204-206Conference paper (Refereed)
    Abstract [en]

    Through the 20th century the use of glycerine has mainly been focused to the food industry, the cosmetic industry and the pharmaceutical industry. The required volumes for these industries can’t be compared with the larger bulk chemicals produced today. These low requirements together with the increased glycerine production, associated with the biodiesel production from which glycerine is a large by-product, has forced the prices down to approximately 100-150 $/tonne. This low cost crude glycerine has been an initiator for developing methods on how to convert the glycerine to more usable products. A proposed method by the company Biofuel Solutions has been to convert the glycerine into bio-LPG. With the EU directives stating that at least 10 % of the fuels in the transport sector should come from renewable sources this route may turn out favourable. This will though cause a large increase in demand as one of the few new ways to provide bio-LPG and thus increase in price, which will require new ways to produce glycerine.

    With a possible increased demand on glycerine a proposed route to produce glycerine is via catalytic hydrogenation of glucose to sorbitol and further catalytic hydrogenolysis of sorbitol to glycerine. The production of sorbitol from glucose is today already industrialised with large producers such as Roquette Frères, Cargill and SPI Polyols. The industrial process is historically made batch wise with low cost Raney-nickel catalyst but with the development of good selectivity catalysts with no leaching problems it is assumed that todays’ production is mainly operating with catalyst with noble metals as the active metal, such as ruthenium, in a continuous process. For the hydrogenolysis of sorbitol to glycerine a good method is rather unexplored as the hydrogenolysis is previously mostly performed with either ethylene glycol (EG) or propylene glycol (PG) as the wanted product [1]. In context with the text above it is of great interest to investigate the catalytic hydrogenolysis of sorbitol to glycerine for the further production of bio-LPG.

    Research made on catalytic hydrogenolysis of sorbitol is done with mostly glycols as the main products, [1]. With the still reasonable selectivity of glycerine, up to 40 % with Raney-nickel as catalyst [2], the proposed research method is similar [1-3]. The planned method performed by Biofuel-Solutions includes trials in an autoclave reactor with the catalyst dispersed in the reactant solution under hydrogen pressure of 20-100 bar and mild temperatures, 100-300 °C, and stirring in resemblance to previous research [4]. As leaching issues has been seen with Raney-nickel in the hydrogenation of glucose to produce sorbitol [5], a similar process, this behaviour is expected to require certain measures which also will be tested. Tests will also include to investigate the influence of the catalyst basicity, which seems to affect the selectivity towards glycerol positively [1,2,5].

    A final process of producing bio-LPG with the start from glucose is seen in Figure 1 below. In the picture a long chain of processes-steps is displayed. In the blue box the degradation of the lignocellulosic material takes place. This is then led to the fraction where glucose is required from enzymatic hydrolysis. In the grey box to the right the glycerol conversion to LPG is shown, a multi process-step of which most details are already known within the company. 

  • 46.
    Odenbrand, Ingemar
    et al.
    Lund University.
    Brandin, Jan
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Deactivation of SCR catalysts used in municipal waste incineration applications2016In: Proceeding of the 17th Nordic Symposium on Catalysis: Book of Abstracts / [ed] Ingemar Odenbrand, Christian Hulteberg, Lund University , 2016, p. 108-109Conference paper (Refereed)
  • 47.
    Parsland, Charlotte
    et al.
    Linnaeus University, Faculty of Technology, Department of Building and Energy Technology.
    Brandin, Jan
    Linnaeus University, Faculty of Technology, Department of Building and Energy Technology.
    Nickel-substituted Ba-hexaaluminates as catalysts stem-reforming of tars2013In: CRS-2, Catalysis for Renewable sources: Fuel. Energy, Chemicals Book of Abstracts / [ed] Vadim Yakovlev, Boreskov Institute of Catalysis, Novosibirsk: Boreskov Institute of Catalysis , 2013, p. 62-63Conference paper (Refereed)
    Abstract [en]

    Gasification of woody biomass converts the solid organic material into a gaseous product with a higher energy value and by this mean provide a more carbon neutral gaseous fuel than the common fossil ones. The produced raw gas mainly contains H2, CO, CO2, CH4, H2O and N2 together with organic (tars) and inorganic (alkali) components and fine particulates. The amount of impurities in the raw gas is dependent of the fuel properties and the gasification process technology and the quality of the resulting product gas determines its suitability for more advanced purposes. One of the major general concerns within the gasification processes is the formation of tars. Tars are a vast group of polyaromatic hydrocarbons and there are a number of definitions. On an EU/IEA/US-DOE discussion meeting in Brussels 1998, a number of experts agreed on a simplified classification of tars as “all organic contaminants with a molecular weight larger than benzene” [1]. The aim of this work is to investigate the steam reforming ability of a catalytic material not previously tested in this type of application in order to achieve an energy-efficient and high-quality gasification gas. The physical demands for an optimal tar-cracking and steam reforming catalyst is a high surface area, thermal stability, mechanical strength and a capacity to withstand high gas velocities, poisons such as H2S or NH3 and other impurities. Additionally it has to resist the process steam, as steam is well known to enhance sintering of porous materials. Nickel is a familiar catalyst for steam reforming. Hexaaluminate is a well-known catalyst support with properties that may answer to the requests of a non-abrasive, high-temperaturestable and steam-resistant catalytic material. It is a structural oxide where the general formula for the doped unit cell is MIMII(x)Al12-xO19-d where MI represents the mirror plane cation and MII is the aluminum site in the lattice where substitution may occur. MII is often a transition metal ion of the same size and charge as aluminum. MI is an ion located in the mirror plane of the structure and it is a large metal ion, often from the alkaline, alkaline earth or rare earth metal group. The stability and activity of these materials are often being related to the properties of MI and MII. The activity is highly dependent on the nature of the Al-substituted metal and partially by the nature of MII [2]. In our experiments we have tested the catalytic capacity of Ni-substituted Ba-hexaaluminates synthesised by the sol-gel method [3], both in a model set-up and in a gasification plant. In the lab-scale set-up different catalyst-formulae was tested under various temperatures for reforming of methyl-naphthalene. The results show a good catalytic activity for tar-breakdown. As expected the substitution level of Ni is clearly coupled to the reaction temperature. With the most highly substituted Ni-Bahexaaluminate at 900 °C all of the methyl-naphthalene has been broken downtogether with all of the resulting hydrocarbons. The Ni-Bahexaaluminate catalyst has recently also been tested in real process-gas.

    These results are still to be evaluated, but indicate a positive result.

     

     

  • 48.
    Parsland, Charlotte
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Engineering.
    Brandin, Jan
    Linnaeus University, Faculty of Science and Engineering, School of Engineering.
    Nickel-substituted Barium-hexaaluminates as Catalysts in the Steam-reforming of Tars2012In: 20th European Biomass Conference and Exhibition: "Setting the course for a biobased economy" / [ed] B Krautkremer, 2012Conference paper (Other academic)
    Abstract [en]

    The aim of this work is to investigate the catalytic properties, i.e. activity, selectivity and stability of nickel‐substituted Ba‐hexaaluminates for the cracking and steam‐reforming of a tar in product gas from biomass gasification. A lab‐scale set‐up has been constructed, consisting of a quartz reactor placed in a vertical oven, filled with the catalyst bed material. Methyl‐naphthalene was chosen as a tar model substance since naphthalene is considered to be especially difficult to reform, and since it is in liquid form at room temperature it is easier to handle than the solid naphthalene. A gas stream containing nitrogen gas, steam and methyl‐naphthalene was passed through the reactor and the resulting gas was analyzed by GC‐FID and GC‐TCD. Different catalyst compositions have been tested at different temperatures. The activity, stability and the product distribution was investigated as function of the temperature for the Ni‐substituted catalysts. In this study, three catalysts with different Ni‐substitution levels were used; BaNiAl11O19, BaNi1.5Al10.5O19and BaNi2Al10O19.

    The physical demands for an optimal cracking and steam reforming catalyst is a high surface area, thermal stability, abrasion resistance, and a capacity to withstand high gas velocities. Additionally it has to resist the process steam, as steam is well known to enhance sintering of porous materials. Hexaaluminate is a well

    ‐known high‐temperature material with properties that may well answer to these requests. If it can be substituted to a high catalytic activity this material may well be a good candidate for steam reforming. Our results show that we have synthesized a material with the desired composition and structure. The activity tests show that we have a good reforming ability from all the catalytic materials, but with an increased activity for BaNi2Al10O19. At 1000°C all methyl‐naphthalene was decomposed in all three cases and also at 900°C for the BaNi2Al10O19. There was no char deposition in the catalyst bed and the pore size distribution was unaffected after approximately 50h on stream.

    In our continuing studies we will use synthesis gas instead of nitrogen and we will also examine the effect of catalyst poisons like hydrogen sulfide and chlorine.The synthesized BaNi‐hexaaluminates has proven to be very interesting candidates for a new, more resistant steam reforming catalyst in the aim of producing synthesis gas of a high quality.

  • 49.
    Parsland, Charlotte
    et al.
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Brandin, Jan
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Benito, Patricia
    University of Bologna, Italy.
    Hoang Ho, Phuoc
    University of Bologna, Italy.
    Fornasari, Guiseppe
    University of Bologna, Italy.
    Ni-substituted Ba-hexaaluminate as a new catalytic material in steam reforming of tars2017In: Europacat: 13th European Conference on Catalysis, 27-31 August 2017, Florence Italy, 2017Conference paper (Refereed)
  • 50.
    Parsland, Charlotte
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Engineering.
    Einvall, Jessica
    Linnaeus University, Faculty of Science and Engineering, School of Engineering.
    Brandin, Jan
    Linnaeus University, Faculty of Science and Engineering, School of Engineering.
    Scale-up and Assessment of Water Gas Shifts2010Report (Other academic)
    Abstract [en]

    Synthesis gas consists of a mixture between hydrogen, carbon monoxide, carbon dioxide and water. This gas is normally generated by gasification of a carbon containing fuel, to be used as a feedstock for various synthesis processes. The actual composition of the gas depends on many different factors such as type of fuel, type of gasifier, mode of operation of the gasifier etc. The producer gas, i.e. the gas after the gasification step, usually need upgrading since it contains lower hydrocarbons and tars that needs to be converted. This upgrading, from producer gas into synthesis gas is done in the reformer step. The resulting synthesis gas is not necessarily suited for the subsequent synthesis step; it might need to be processed further. For instance the carbon dioxide level might need to be decreased and/or the hydrogen-carbon dioxide ratio to be adjusted. The water gas shift (WGS) process is the process where the ratio between hydrogen and carbon monoxide in the synthesis gas can be tuned.

12 1 - 50 of 58
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf