lnu.sePublications
Change search
Refine search result
12 1 - 50 of 85
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Akram, Neelam
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Palovaara, Joakim
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Forsberg, Jeremy
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Lindh, Markus V.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Milton, Debra L.
    Luo, Haiwei
    Gonzalez, Jose M.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Regulation of proteorhodopsin gene expression by nutrient limitation in the marine bacterium Vibrio sp AND42013In: Environmental Microbiology, ISSN 1462-2912, E-ISSN 1462-2920, Vol. 15, no 5, p. 1400-1415Article in journal (Refereed)
    Abstract [en]

    Proteorhodopsin (PR), a ubiquitous membrane photoprotein in marine environments, acts as a light-driven proton pump and can provide energy for bacterial cellular metabolism. However, knowledge of factors that regulate PR gene expression in different bacteria remains strongly limited. Here, experiments with Vibrio sp. AND4 showed that PR phototrophy promoted survival only in cells from stationary phase and not in actively growing cells. PR gene expression was tightly regulated, with very low values in exponential phase, a pronounced peak at the exponential/stationary phase intersection, and a marked decline in stationary phase. Thus, PR gene expression at the entry into stationary phase preceded, and could therefore largely explain, the stationary phase light-induced survival response in AND4. Further experiments revealed nutrient limitation, not light exposure, regulated this differential PR expression. Screening of available marine vibrios showed that the PR gene, and thus the potential for PR phototrophy, is found in at least three different clusters in the genus Vibrio. In an ecological context, our findings suggest that some PR-containing bacteria adapted to the exploitation of nutrient-rich micro-environments rely on a phase of relatively slowly declining resources to mount a cellular response preparing them for adverse conditions dispersed in the water column.

  • 2. Allers, E
    et al.
    Gomez-Consarnau, Laura
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Pinhassi, Jarone
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Simek, K
    Gasol, JM
    Pernthaler, J
    Population dynamics of Alteromonas and Roseobacter in marine mesocosms after substrate and nutrient manipulations2007In: Environmental Microbiology, ISSN 1462-2912, E-ISSN 1462-2920, Vol. 9, p. 2417-2429Article in journal (Refereed)
  • 3. Alonso-Saez, L
    et al.
    Aristegui, J
    Pinhassi, Jarone
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Gomez-Consarnau, Laura
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Gonzalez, JM
    Vaque, D
    Agusti, S
    Gasol, JM
    Bacterial assemblage structure and carbon metabolism along a productivity gradient in the NE Atlantic Ocean2007In: Aquatic Microbial Ecology, ISSN 0948-3055, E-ISSN 1616-1564, Vol. 46, p. 43-53Article in journal (Refereed)
  • 4. Alonso-Saez, L
    et al.
    Balagué, V
    Sanchez, ESO
    Gonzalez, JM
    Pinhassi, Jarone
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Massana, R
    Pernthaler, J
    Pedros-Alio, C
    Gasol, JM
    Seasonality in bacterial diversity in north-west Mediterranean coastal waters: assessment through clone libraries, fingerprinting and FISH2007In: FEMS Microbiology Ecology, ISSN 0168-6496, E-ISSN 1574-6941, Vol. 60, p. 98-112Article in journal (Refereed)
  • 5. Alonso-Saez, L.
    et al.
    Vazquez-Dominguez, E.
    Cardelus, C.
    Pinhassi, Jarone
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Sala, M. M.
    Lekunberri, I.
    Balague, V.
    Vila-Costa, M.
    Unrein, F.
    Massana, R.
    Simo, R.
    Gasol, J. M.
    Factors controlling the year-round variability in carbon flux through bacteria in a coastal marine system2008In: Ecosystems (New York. Print), ISSN 1432-9840, E-ISSN 1435-0629, Vol. 11, no 3, p. 397-409Article in journal (Refereed)
    Abstract [en]

    Data from several years of monthly samplings are combined with a 1-year detailed study of carbon flux through bacteria at a NW Mediterranean coastal site to delineate the bacterial role in carbon use and to assess whether environmental factors or bacterial assemblage composition affected the in situ rates of bacterial carbon processing. Leucine (Leu) uptake rates [as an estimate of bacterial heterotrophic production (BHP)] showed high interannual variability but, on average, lower values were found in winter (around 50 pM Leu(-1) h(-1)) as compared to summer (around 150 pM Leu(-1) h(-1)). Leu-to-carbon conversion factors ranged from 0.9 to 3.6 kgC mol Leu(-1), with generally higher values in winter. Leu uptake was only weakly correlated to temperature, and over a full-year cycle (in 2003), Leu uptake peaked concomitantly with winter chlorophyll a (Chl a) maxima, and in periods of high ectoenzyme activities in spring and summer. This suggests that both low molecular weight dissolved organic matter (DOM) released by phytoplankton, and high molecular weight DOM in periods of low Chl a, can enhance BHP. Bacterial respiration (BR, range 7-48 mu g C l(-1) d(-1)) was not correlated to BHP or temperature, but was significantly correlated to DOC concentration. Total bacterial carbon demand (BHP plus BR) was only met by dissolved organic carbon produced by phytoplankton during the winter period. We measured bacterial growth efficiencies by the short-term and the long-term methods and they ranged from 3 to 42%, increasing during the phytoplankton blooms in winter (during the Chl a peaks), and in spring. Changes in bacterioplankton assemblage structure (as depicted by denaturing gradient gel electrophoresis fingerprinting) were not coupled to changes in ecosystem functioning, at least in bacterial carbon use.

  • 6. Alonso-Saez, Laura
    et al.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Pernthaler, Jakob
    Gasol, Josep M.
    Leucine-to-carbon empirical conversion factor experiments: does bacterial community structure have an influence?2010In: Environmental Microbiology, ISSN 1462-2912, E-ISSN 1462-2920, Vol. 12, no 11, p. 2988-2997Article in journal (Refereed)
    Abstract [en]

    The suitability of applying empirical conversion factors (eCFs) to determine bacterial biomass production remains unclear because seawater cultures are usually overtaken by phylotypes that are not abundant in situ. While eCFs vary across environments, it has not been tested whether differences in eCFs are driven by changes in bacterial community composition or by in situ environmental conditions. We carried out seawater cultures throughout a year to analyse the correlation between eCFs and bacterial community structure, analysed by catalysed reporter deposition fluorescence in situ hybridization. Gammaproteobacteria usually dominated seawater cultures, but their abundance exhibited a wide range (25–73% of cell counts) and significantly increased with inorganic nutrient enrichment. Flavobacteria were less abundant but increased up to 40% of cells counts in winter seawater cultures, when in situ chlorophyll a was high. The correlations between eCFs and the abundance of the main broad phylogenetic groups (Gamma-, Alphaproteobacteria and Flavobacteria) were significant, albeit weak, while more specific groups (Alteromonadaceae and Rhodobacteraceae) were not significantly correlated. Our results show that the frequent development of the fast-growing group Alteromonadaceae in seawater cultures does not strongly drive the observed variations in eCFs. Rather, the results imply that environmental conditions and the growth of specific phylotypes interact to determine eCFs.

  • 7.
    Aparicio, Fran L.
    et al.
    CSIC, Spain.
    Nieto-Cid, Mar
    CSIC, Spain.
    Borrull, Encarna
    CSIC, Spain.
    Calvo, Eva
    CSIC, Spain.
    Pelejero, Carles
    CSIC, Spain ; CREA, Spain.
    Montserrat Sala, Maria
    CSIC, Spain.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Gasol, Josep M.
    CSIC, Spain.
    Marrase, Celia
    CSIC, Spain.
    Eutrophication and acidification: Do they induce changes in the dissolved organic matter dynamics in the coastal Mediterranean Sea?2016In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 563, p. 179-189Article in journal (Refereed)
    Abstract [en]

    Two mesocosms experiments were conducted in winter 2010 and summer 2011 to examine how increased pCO(2) and/or nutrient concentrations potentially perturbate dissolved organic matter dynamics in natural microbial assemblages. The fluorescence signals of protein-and humic-like compounds were used as a proxy for labile and non-labile material, respectively, while the evolution of bacterial populations, chlorophyll a (Chl a) and dissolved organic carbon (DOC) concentrations were used as a proxy for biological activity. For both seasons, the presence of elevated pCO(2) did not cause any significant change in the DOC dynamics (p-value < 0.05). The conditions that showed the greatest changes in prokaryote abundances and Chl a content were those amended with nutrients, regardless of the change in pH. The temporal evolution of fluorophores and optical indices revealed that the degree of humification of the organic molecules and their molecular weight changed significantly in the nutrient-amended treatment. The generation of protein-like compounds was paired to increases in the prokaryote abundance, being higher in the nutrient-amended tanks than in the control. Different patterns in the magnitude and direction of the generation of humic-like molecules suggested that these changes depended on initial microbial populations and the availability of extra nutrient inputs. Based on our results, it is expected that in the future projected coastal scenarios the eutrophication processes will favor the transformations of labile and recalcitrant carbon regardless of changes in pCO(2). (c) 2016 The Authors. Published by Elsevier B.V.

  • 8.
    Arahal, David R.
    et al.
    Univ Valencia, Spain.
    Lucena, Teresa
    Univ Valencia, Spain.
    Carmen Macian, M.
    Univ Valencia, Spain.
    Ruvira, Maria A.
    Univ Valencia, Spain.
    Gonzalez, Jose M.
    Univ La Laguna, Spain.
    Lekumberri, Itziar
    Univ Girona, Spain.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Pujalte, Maria J.
    Univ Valencia, Spain.
    Marinomonas blandensis sp nova, a novel marine gammaproteobacterium2016In: International Journal of Systematic and Evolutionary Microbiology, ISSN 1466-5026, E-ISSN 1466-5034, Vol. 66, p. 5544-5549Article in journal (Refereed)
    Abstract [en]

    A novel Gram-staining-negative, chemoorganotrophic, moderately halophilic, strictly aerobic bacterium, strain MED121(T), was isolated from a seawater sample collected at the Blanes Bay Microbial Observatory in the north-western Mediterranean Sea. Analysis of its 16S rRNA gene sequence, retrieved from the whole-genome sequence, showed that this bacterium was most closely related to Marinomonas dokdonensis and other Marinomonas species (96.3 and 93.3-95.7% sequence similarities, respectively), within the family Oceanospirillaceae. Strain MED121(T) was included into a whole-genome sequencing study and, subsequently, it was characterized using a polyphasic taxonomic approach. It was found to be oxidase and catalase positive, its cells are cocci to short rods, it does not ferment carbohydrates and does not reduce nitrate to nitrite or gas and it requires at least 2.5% (w/v) marine salts and tolerates up to 7% (w/v) salts. Its major cellular fatty acids in order of abundance are C-16:1 omega 7c/C-16:1 omega 6c,C-18:1 omega 7c(1), C-16:0 and C-10:0 3-OH. Its genome had an approximate length of 5.1 million bases and a DNA G+C content equal to 40.9 mol%. Analysis of the annotated genes reveals the capacity for the synthesis of ubiquinone 8 (O8) and the polar lipids phosphatidylglycerol and phosphatidylethanolannine, in agreement with other members of the genus. All the data collected supported the creation of a novel species to accommodate this bacterium, for which the name Marinomonas blandensis sp. nov. is proposed. The type strain is MED121(T) (=CECT 7076(T)=LMG 29722(T)).

  • 9. Arahal, DR
    et al.
    Lekunberri, I
    Gonzalez, JM
    Pascual, J
    Pujalte, MJ
    Pedros-Alio, C
    Pinhassi, Jarone
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Neptuniibacter caesariensis gen. nov., sp. nov., a novel marine genome-sequenced gammaproteobacterium2007In: International Journal of Systematic and Evolutionary Microbiology, ISSN 1466-5026, E-ISSN 1466-5034, Vol. 57, p. 1000-1006Article in journal (Refereed)
  • 10.
    Baltar, Federico
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. University of Otago, New Zealand.
    Legrand, Catherine
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Cell-free extracellular enzymatic activity is linked to seasonal temperature changes: a case study in the Baltic Sea2016In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 13, no 9, p. 2815-2821Article in journal (Refereed)
    Abstract [en]

    Extracellular enzymatic activities (EEA) are a crucial step on the degradation of organic matter. Dissolved (cell-free) extracellular enzymes in seawater can make up a significant contribution of the bulk EEA. However, the factors controlling the proportion of dissolved EEA in the marine environment remain unknown. Here we studied the seasonal changes in the proportion of dissolved relative to total EEA (of alkaline phosphatase [APase], β-glucosidase, [BGase], and leucine aminopeptidase, [LAPase]), in the Baltic Sea for 18 months. The proportio n of dissolved EEA ranged between 37-100%, 0-100%, 34-100% for APase, BGase and LAPase, respectively. A consistent seasonal pattern in the proportion of dissolved EEA was found among all the studied enzymes, with values up to 100% during winter and <40% du ring summer. A significant negative relation was found between the 21proportion of dissolved EEA and temperature, indicating that temperature might be a critical factor controlling the proportion of dissolved relative to total EEA in marine environments. Our results suggest a strong decoupling of hydrolysis rates from mi crobial dynamics in cold waters. This implies that under cold conditions, cell-free enzymes can contribute to substrate availability at large distances from the producing cell, increasing the dissociation between the hydrolysis of organic compounds and the actual microbes producing the enzymes. This also indicates that global warming could come to affect the hydrolysis of organic matter by reducing the hydrolytic activity of cell-free enzymes.

  • 11.
    Baltar, Federico
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Lindh, Markus V.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Parparov, Arkadi
    Israel Oceanographic and Limnological Research.
    Berman, Tom
    Israel Oceanographic and Limnological Research.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Prokaryotic community structure and respiration during long-term incubations2012In: MicrobiologyOpen, ISSN 2045-8827, E-ISSN 2045-8827, Vol. 1, no 2, p. 214-224Article in journal (Refereed)
    Abstract [en]

    Despite the importance of incubation assays for studies inmicrobial ecology that frequentlyrequire long confinement times, few reports are available in which changesin the assemblage structure of aquatic prokaryotes were monitored during longtermincubations.We measured rates of dissolved organic carbon degradation andmicrobial respiration by consumption of dissolved oxygen (DO) in four experimentswith Lake Kinneret near-surface water and, concomitantly, we analyzed thevariability in prokaryotic community structure during long-term dark bottle incubations.During the first 24 h, therewere only minor changes in bacterial communitycomposition. Thereafter there were marked changes in the prokaryotic communitystructure during the incubations. In contrast, oxygen consumption rates (a proxyfor both respiration and dissolved organic carbon degradation rates) remained stablefor up to 10–23 days. This study is one of the first to examine closely the phylogeneticchanges that occur in the microbial community of untreated freshwaterduring long-term (days) incubations in dark, sealed containers. Novel informationon the diversity of the main bacterial phylotypes that may be involved in dissolvedorganic matter degradation in lake Kinneret is also provided. Our results suggestthat, under certain ecological settings, constant community metabolic rates can bemaintained as a result of shifts in community composition.

  • 12.
    Baltar, Federico
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Univ Otago, New Zealand.
    Lundin, Daniel
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Palovaara, Joakim
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Lekunberri, Itziar
    Univ Vienna, Austria ; Inst Catala Recerca Aigua, Spain.
    Reinthaler, Thomas
    Univ Vienna, Austria.
    Herndl, Gerhard J.
    Univ Vienna, Austria ; Univ Utrecht, Netherlands.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Prokaryotic Responses to Ammonium and Organic Carbon Reveal Alternative CO2 Fixation Pathways and Importance of Alkaline Phosphatase in the Mesopelagic North Atlantic2016In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 7, article id 1670Article in journal (Refereed)
    Abstract [en]

    To decipher the response of mesopelagic prokaryotic communities to input of nutrients, we tracked changes in prokaryotic abundance, extracellular enzymatic activities, heterotrophic production, dark dissolved inorganic carbon (DIC) fixation, community composition (16S rRNA sequencing) and community gene expression (metatranscriptomics) in 3 microcosm experiments with water from the mesopelagic North Atlantic. Responses in 3 different treatments amended with thiosulfate, ammonium or organic matter (i.e., pyruvate plus acetate) were compared to unamended controls. The strongest stimulation was found in the organic matter enrichments, where all measured rates increased >10-fold. Strikingly, in the organic matter treatment, the dark DIC fixation rates-assumed to be related to autotrophic metabolisms-were equally stimulated as all the other heterotrophic-related parameters. This increase in DIC fixation rates was paralleled by an up-regulation of genes involved in DIC assimilation via anaplerotic pathways. Alkaline phosphatase was the metabolic rate most strongly stimulated and its activity seemed to be related to cross-activation by nonpartner histidine kinases, and/or the activation of genes involved in the regulation of elemental balance during catabolic processes. These findings suggest that episodic events such as strong sedimentation of organic matter into the mesopelagic might trigger rapid increases of originally rare members of the prokaryotic community, enhancing heterotrophic and autotrophic carbon uptake rates, ultimately affecting carbon cycling. Our experiments highlight a number of fairly unstudied microbial processes of potential importance in mesopelagic waters that require future attention.

  • 13.
    Baltar, Federico
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. University of Otago, New Zealand.
    Palovaara, Joakim
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Wageningen University, The Netherlands.
    Unrein, Fernando
    Institut de Ciències del Mar CSIC, Spain.
    Catala, Philippe
    Pierre-and-Marie-Curie University, France.
    Hornak, Karel
    Biology Centre of the Academy of Sciences of the Czech Republic, Czech Republic.
    Simek, Karel
    Biology Centre of the Academy of Sciences of the Czech Republic, Czech Republic.
    Vaque, Dolors
    Institut de Ciències del Mar CSIC, Spain.
    Massana, Ramon
    Institut de Ciències del Mar CSIC, Spain.
    Gasol, Josep M.
    Institut de Ciències del Mar CSIC, Spain.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Marine bacterial community structure resilience to changes in protist predation under phytoplankton bloom conditions2016In: The ISME Journal, ISSN 1751-7362, E-ISSN 1751-7370, Vol. 10, no 3, p. 568-581Article in journal (Refereed)
    Abstract [en]

    To test whether protist grazing selectively affects the composition of aquatic bacterial communities, we combined high-throughput sequencing to determine bacterial community composition with analyses of grazing rates, protist and bacterial abundances and bacterial cell sizes and physiological states in a mesocosm experiment in which nutrients were added to stimulate a phytoplankton bloom. A large variability was observed in the abundances of bacteria (from 0.7 to 2.4 x 10(6) cells per ml), heterotrophic nanoflagellates (from 0.063 to 2.7 x 10(4) cells per ml) and ciliates (from 100 to 3000 cells per l) during the experiment (similar to 3-, 45- and 30-fold, respectively), as well as in bulk grazing rates (from 1 to 13 x 10(6) bacteria per ml per day) and bacterial production (from 3 to 379 mu g per Cl per day) (1 and 2 orders of magnitude, respectively). However, these strong changes in predation pressure did not induce comparable responses in bacterial community composition, indicating that bacterial community structure was resilient to changes in protist predation pressure. Overall, our results indicate that peaks in protist predation (at least those associated with phytoplankton blooms) do not necessarily trigger substantial changes in the composition of coastal marine bacterioplankton communities.

  • 14.
    Baltar, Federico
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Univ Otago, New Zealand.
    Palovaara, Joakim
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Vila-Costa, Maria
    Univ Barcelona, Spain.
    Salazar, Guillem
    CSIC, Spain.
    Calvo, Eva
    CSIC, Spain.
    Pelejero, Carles
    CSIC, Spain ; Inst Catalana Recerca & Estudis Avancats, Spain.
    Marrase, Celia
    CSIC, Spain.
    Gasol, Josep M.
    CSIC, Spain.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Response of rare, common and abundant bacterioplankton to anthropogenic perturbations in a Mediterranean coastal site2015In: FEMS Microbiology Ecology, ISSN 0168-6496, E-ISSN 1574-6941, Vol. 91, no 6, article id UNSP fiv058Article in journal (Refereed)
    Abstract [en]

    Bacterioplankton communities are made up of a small set of abundant taxa and a large number of low-abundant organisms (i.e. 'rare biosphere'). Despite the critical role played by bacteria in marine ecosystems, it remains unknown how this large diversity of organisms are affected by human-induced perturbations, or what controls the responsiveness of rare compared to abundant bacteria. We studied the response of a Mediterranean bacterioplankton community to two anthropogenic perturbations (i.e. nutrient enrichment and/or acidification) in two mesocosm experiments (in winter and summer). Nutrient enrichment increased the relative abundance of some operational taxonomic units (OTUs), e.g. Polaribacter, Tenacibaculum, Rhodobacteraceae and caused a relative decrease in others (e.g. Croceibacter). Interestingly, a synergistic effect of acidification and nutrient enrichment was observed on specific OTUs (e.g. SAR86). We analyzed the OTUs that became abundant at the end of the experiments and whether they belonged to the rare (<0.1% of relative abundance), the common (0.1-1.0% of relative abundance) or the abundant (>1% relative abundance) fractions. Most of the abundant OTUs at the end of the experiments were abundant, or at least common, in the original community of both experiments, suggesting that ecosystem alterations do not necessarily call for rare members to grow.

  • 15.
    Baltar, Federico
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Reinthaler, Thomas
    University of Vienna, Austria.
    Herndl, Gerhard J.
    University of Vienna, Austria ; Royal Netherlands Institute for Sea Research (NIOZ), The Netherlands.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Major Effect of Hydrogen Peroxide on Bacterioplankton Metabolism in the Northeast Atlantic2013In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 8, no 4, article id e61051Article in journal (Refereed)
    Abstract [en]

    Reactive oxygen species such as hydrogen peroxide have the potential to alter metabolic rates of marine prokaryotes, ultimately impacting the cycling and bioavailability of nutrients and carbon. We studied the influence of H2O2 on prokaryotic heterotrophic production (PHP) and extracellular enzymatic activities (i.e., beta-glucosidase [BGase], leucine aminopeptidase [LAPase] and alkaline phosphatase [APase]) in the subtropical Atlantic. With increasing concentrations of H2O2 in the range of 100-1000 nM, LAPase, APase and BGase were reduced by up to 11, 23 and 62%, respectively, in the different water layers. Incubation experiments with subsurface waters revealed a strong inhibition of all measured enzymatic activities upon H2O2 amendments in the range of 10-500 nM after 24 h. H2O2 additions also reduced prokaryotic heterotrophic production by 36-100% compared to the rapid increases in production rates occurring in the unamended controls. Our results indicate that oxidative stress caused by H2O2 affects prokaryotic growth and hydrolysis of specific components of the organic matter pool. Thus, we suggest that oxidative stress may have important consequences on marine carbon and energy fluxes.

  • 16. Beja, Oded
    et al.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Spudich, John L.
    Proteorhodopsins: widespread microbial light-driven proton pumps2013In: Encyclopedia of Biodiversity / [ed] Levin S.A., Waltham, MA: Academic Press, 2013, 2:nd edition, vol. 2, p. 280-285Chapter in book (Refereed)
    Abstract [en]

    Proteorhodopsins (PRs) are membrane-embedded, retinal-containing proteins that function as light-driven proton pumps. Since their discovery in 2000 in uncultured marine bacteria, PRs have been detected in numerous bacteria, archaea, and microbial eukarya. PRs have now been detected in diverse habitats, including marine, brackish, and freshwater environments; leaf surfaces; and soil crusts. Their widespread distribution and relatively simple single-molecule design suggests them as the earliest light-energy transducing proteins to have evolved. Currently, PRs represent the simplest biological means to convert light energy into chemical energy.

  • 17.
    Bertos-Fortis, Mireia
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Farnelid, Hanna
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Lindh, Markus V.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Casini, Michele
    Swedish University of Agricultural Sciences.
    Andersson, Agneta
    Umeå University.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Legrand, Catherine
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Unscrambling Cyanobacteria Community Dynamics Related to Environmental Factors2016In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 7, article id 625Article in journal (Refereed)
    Abstract [en]

    Future climate scenarios in the Baltic Sea project an increase of cyanobacterial bloom frequency and duration, attributed to eutrophication and climate change. Some cyanobacteria can be toxic and their impact on ecosystem services is relevant for a sustainable sea. Yet, there is limited understanding of the mechanisms regulating cyanobacterial diversity and biogeography. Here we unravel successional patterns and changes in cyanobacterial community structure using a 2-year monthly time series during the productive season in a 100 km coastal-offshore transect using microscopy and high-throughput sequencing of 16S rRNA gene fragments. A total of 565 cyanobacterial OTUs were found, of which 231 where filamentous/colonial and 334 picocyanobacterial. Spatial differences in community structure between coastal and offshore waters were minor. An "epidemic population structure" (dominance of a single cluster) was found for Aphanizomenon/Dolichospermum within the filamentous/colonial cyanobacterial community. In summer, this cluster simultaneously occurred with opportunistic clusters/OTUs, e.g., Nodulana spumigena and Pseudanabaena. Picocyanobacteria, Synechococcus/Cyanobium, formed a consistent but highly diverse group. Overall, the potential drivers structuring summer cyanobacterial communities were temperature and salinity. However, the different responses to environmental factors among and within genera suggest high niche specificity for individual OTUs. The recruitment and occurrence of potentially toxic filamentous/colonial clusters was likely related to disturbance such as mixing events and short-term shifts in salinity, and not solely dependent on increasing temperature and nitrogen-limiting conditions. Nutrients did not explain further the changes in cyanobacterial community composition. Novel occurrence patterns were identified as a strong seasonal succession revealing a tight coupling between the emergence of opportunistic picocyanobacteria and the bloom of filamentous/colonial clusters. These findings highlight that if environmental conditions can partially explain the presence of opportunistic picocyanobacteria, microbial and trophic interactions with filamentous/colonial cyanobacteria should also be considered as potential shaping factors for single-celled communities. Regional climate change scenarios in the Baltic Sea predict environmental shifts leading to higher temperature and lower salinity; conditions identified here as favorable for opportunistic filamentous/colonial cyanobacteria. Altogether, the diversity and complexity of cyanobacterial communities reported here is far greater than previously known, emphasizing the importance of microbial interactions between filamentous and picocyanobacteria in the context of environmental disturbances.

  • 18.
    Brindefalk, Bjorn
    et al.
    Stockholm University.
    Ekman, Martin
    Stockholm University.
    Ininbergs, Karolina
    Stockholm University.
    Dupont, Christopher L.
    J Craig Venter Inst, USA.
    Yooseph, Shibu
    J Craig Venter Inst, USA.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Bergman, Birgitta
    Stockholm University.
    Distribution and expression of microbial rhodopsins in the Baltic Sea and adjacent waters2016In: Environmental Microbiology, ISSN 1462-2912, E-ISSN 1462-2920, Vol. 18, no 12, p. 4442-4455Article in journal (Refereed)
    Abstract [en]

    Rhodopsins are light-driven ion-pumping membrane proteins found in many organisms and are proposed to be of global importance for oceanic microbial energy generation. Several studies have focused on marine environments, with less exploration of rhodopsins in brackish waters. We investigated microbial rhodopsins in the Baltic Sea using size-fractionated metagenomic and metatranscriptomic datasets collected along a salinity gradient spanning from similar to 0 to 35 PSU. The normalised genomic abundance of rhodopsins in Bacteria, as well as rhodopsin gene expression, was highest in the smallest size fraction (0.1-0.8 mu m), relative to the medium (0.8-3.0 mu m) and large (> 3.0 mu m) size fractions. The abundance of rhodopsins in the two smaller size fractions displayed a positive correlation with salinity. Proteobacteria and Bacteroidetes rhodopsins were the most abundant while Actinobacteria rhodopsins, or actinorhodopsins, were common at lower salinities. Phylogenetic analysis indicated that rhodopsins have adapted independently to the marine-brackish transition on multiple occasions, giving rise to green light-adapted variants from ancestral blue light-adapted ones. A notable diversity of viral-like rhodopsins was also detected in the dataset and potentially linked with eukaryotic phytoplankton blooms. Finally, a new clade of likely proton-pumping rhodopsin with non-canonical amino acids in the spectral tuning and proton accepting site was identified.

  • 19.
    Broman, Elias
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Sachpazidou, Varvara
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Dopson, Mark
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Oxygenation of Hypoxic Coastal Baltic Sea Sediments Impacts on Chemistry, Microbial Community Composition, and Metabolism2017In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 8, article id 2453Article in journal (Refereed)
    Abstract [en]

    The Baltic Sea has undergone severe eutrophication during the last century, resulting in increased algal blooms and the development of hypoxic bottom waters. In this study, we sampled oxygen deficient sediment cores from a Baltic Sea coastal bay and exposed the bottom water including the sediment surface to oxygen shifts via artificial addition of air during laboratory incubation. Surface sediment (top 1 cm) from the replicate cores were sliced in the field as well as throughout the laboratory incubations and chemical parameters were analyzed along with high throughput sequencing of community DNA and RNA. After oxygenation, dissolved iron decreased in the water overlying the sediment while inorganic sulfur compounds (thiosulfate and tetrathionate) increased when the water was kept anoxic. Oxygenation of the sediment also maintained RNA transcripts attributed to sulfide and sulfur oxidation as well as nitrogen fixation in the sediment surface. Based on 16S rRNA gene and metatranscriptomic analyses it was found that oxygenation of the sediment surface caused a bloom of the Epsilonproteobacteria genus Arcobacter. In addition, the formation of a thick white film was observed that was likely filamentous zero-valent sulfur produced by the Arcobacter spp. Based on these results, sulfur cycling and nitrogen fixation that were evident in the field samples were ongoing during re-oxygenation of the sediment. These processes potentially added organic nitrogen to the system and facilitated the re-establishment of micro- and macroorganism communities in the benthic zone.

  • 20.
    Broman, Elias
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Sjöstedt, Johanna
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Lund university ; Tech Univ Denmark, Denmark.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Dopson, Mark
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Shifts in coastal sediment oxygenation cause pronounced changes in microbial community composition and associated metabolism2017In: Microbiome, ISSN 0026-2633, E-ISSN 2049-2618, Vol. 5, article id 96Article in journal (Refereed)
    Abstract [en]

    Background

    A key characteristic of eutrophication in coastal seas is the expansion of hypoxic bottom waters, often referred to as ‘dead zones’. One proposed remediation strategy for coastal dead zones in the Baltic Sea is to mix the water column using pump stations, circulating oxygenated water to the sea bottom. Although microbial metabolism in the sediment surface is recognized as key in regulating bulk chemical fluxes, it remains unknown how the microbial community and its metabolic processes are influenced by shifts in oxygen availability. Here, coastal Baltic Sea sediments sampled from oxic and anoxic sites, plus an intermediate area subjected to episodic oxygenation, were experimentally exposed to oxygen shifts. Chemical, 16S rRNA gene, metagenomic, and metatranscriptomic analyses were conducted to investigate changes in chemistry fluxes, microbial community structure, and metabolic functions in the sediment surface.

    Results

    Compared to anoxic controls, oxygenation of anoxic sediment resulted in a proliferation of bacterial populations in the facultative anaerobic genus Sulfurovum that are capable of oxidizing toxic sulfide. Furthermore, the oxygenated sediment had higher amounts of RNA transcripts annotated as sqr, fccB, and dsrA involved in sulfide oxidation. In addition, the importance of cryptic sulfur cycling was highlighted by the oxidative genes listed above as well as dsvA, ttrB, dmsA, and ddhAB that encode reductive processes being identified in anoxic and intermediate sediments turned oxic. In particular, the intermediate site sediments responded differently upon oxygenation compared to the anoxic and oxic site sediments. This included a microbial community composition with more habitat generalists, lower amounts of RNA transcripts attributed to methane oxidation, and a reduced rate of organic matter degradation.

    Conclusions

    These novel data emphasize that genetic expression analyses has the power to identify key molecular mechanisms that regulate microbial community responses upon oxygenation of dead zones. Moreover, these results highlight that microbial responses, and therefore ultimately remediation efforts, depend largely on the oxygenation history of sites. Furthermore, it was shown that re-oxygenation efforts to remediate dead zones could ultimately be facilitated by in situ microbial molecular mechanisms involved in removal of toxic H2S and the potent greenhouse gas methane.

  • 21.
    Bunse, Carina
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Bertos-Fortis, Mireia
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Sassenhagen, Ingrid
    Lund University.
    Sildever, Sirje
    Tallinn University of Technology, Estonia.
    Sjöqvist, Conny
    Marine Research Centre, Finland ; Åbo Akademi University, Finland.
    Godhe, Anna
    University of Gothenburg.
    Gross, Susanna
    University of Gothenburg.
    Kremp, Anke
    Marine Research Centre, Finland.
    Lips, Inga
    Tallinn University of Technology, Estonia.
    Lundholm, Nina
    University of Copenhagen, Denmark.
    Rengefors, Karin
    Lund University.
    Sefbom, Josefin
    University of Gothenburg.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Legrand, Catherine
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Spatio-Temporal Interdependence of Bacteria and Phytoplankton during a Baltic Sea Spring Bloom2016In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 7, article id 517Article in journal (Refereed)
    Abstract [en]

    In temperate systems, phytoplankton spring blooms deplete inorganic nutrients and are major sources of organic matter for the microbial loop. In response to phytoplankton exudates and environmental factors, heterotrophic microbial communities are highly dynamic and change their abundance and composition both on spatial and temporal scales. Yet, most of our understanding about these processes comes from laboratory model organism studies, mesocosm experiments or single temporal transects. Spatial -temporal studies examining interactions of phytoplankton blooms and bacterioplankton community composition and function, though being highly informative, are scarce. In this study, pelagic microbial community dynamics (bacteria and phytoplankton) and environmental variables were monitored during a spring bloom across the Baltic Proper (two cruises between North Germany to Gulf of Finland). To test to what extent bacterioplankton community composition relates to the spring bloom, we used next generation amplicon sequencing of the 16S rRNA gene, phytoplankton diversity analysis based on microscopy counts and population genotyping of the dominating diatom Skeletonema rnarinoi. Several phytoplankton bloom related and environmental variables were identified to influence bacterial community composition. Members of Bacteroidetes and Alphaproteobacteria dominated the bacterial community composition but the bacterial groups showed no apparent correlation with direct bloom related variables. The less abundant bacterial phyla Actinobacteria, Planctomycetes, and Verrucomicrobia, on the other hand, were strongly associated with phytoplankton biomass, diatom:dinoflagellate ratio, and colored dissolved organic matter (cDOM). Many bacterial operational taxonomic units (OTUs) showed high niche specificities. For example, particular Bacteroidetes OTUs were associated with two distinct genetic clusters of S. marinoi. Our study revealed the complexity of interactions of bacterial taxa with inter- and intraspecific genetic variation in phytoplankton. Overall, our findings imply that biotic and abiotic factors during spring bloom influence bacterial community dynamics in a hierarchical manner.

  • 22.
    Bunse, Carina
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Lundin, Daniel
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Karlsson, Christofer M. G.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Akram, Neelam
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Vila-Costa, Maria
    Centre d’Estudis Avançats de Blanes-CSIC, Spain.
    Palovaara, Joakim
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Svensson, Lovisa
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Holmfeldt, Karin
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    González, José M.
    University of La Laguna, Spain.
    Calvo, Eva
    Institut de Ciències del Mar—CSIC, Spain.
    Pelejero, Carles
    Institut de Ciències del Mar—CSIC, Spain.
    Marrasé, Cèlia
    Institut de Ciències del Mar—CSIC, Spain.
    Dopson, Mark
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Gasol, Josep
    Institut de Ciències del Mar—CSIC, Spain.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Response of marine bacterioplankton pH homeostasis gene expression to elevated CO22016In: Nature Climate Change, ISSN 1758-678X, E-ISSN 1758-6798, Vol. 6, no 5, p. 483-487Article in journal (Refereed)
    Abstract [en]

    Human-induced ocean acidification impacts marine life. Marine bacteria are major drivers of biogeochemical nutrient cycles and energy fluxes1; hence, understanding their performance under projected climate change scenarios is crucial for assessing ecosystem functioning. Whereas genetic and physiological responses of phytoplankton to ocean acidification are being disentangled2, 3, 4, corresponding functional responses of bacterioplankton to pH reduction from elevated CO2 are essentially unknown. Here we show, from metatranscriptome analyses of a phytoplankton bloom mesocosm experiment, that marine bacteria responded to lowered pH by enhancing the expression of genes encoding proton pumps, such as respiration complexes, proteorhodopsin and membrane transporters. Moreover, taxonomic transcript analysis showed that distinct bacterial groups expressed different pH homeostasis genes in response to elevated CO2. These responses were substantial for numerous pH homeostasis genes under low-chlorophyll conditions (chlorophyll a <2.5 μg l−1); however, the changes in gene expression under high-chlorophyll conditions (chlorophyll a >20 μg l−1) were low. Given that proton expulsion through pH homeostasis mechanisms is energetically costly, these findings suggest that bacterioplankton adaptation to ocean acidification could have long-term effects on the economy of ocean ecosystems.

  • 23.
    Bunse, Carina
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Lundin, Daniel
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Lindh, Markus V.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Lund University.
    Sjöstedt, Johanna
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Israelsson, Stina
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Martínez-García, Sandra
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Universidade de Vigo, Spain.
    Baltar, Federico
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. University of Otago, New Zealand.
    Muthusamy, Sarala Devi
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Pontiller, Benjamin
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Karlsson, Christofer M. G.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Legrand, Catherine
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Seasonality and co-occurrences of free-living Baltic Sea bacterioplanktonManuscript (preprint) (Other academic)
  • 24.
    Bunse, Carina
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Marine bacterioplankton seasonal succession dynamics2017In: Trends in Microbiology, ISSN 0966-842X, E-ISSN 1878-4380, Vol. 25, no 6, p. 495-505Article in journal (Refereed)
    Abstract [en]

    Bacterioplankton (bacteria and archaea) are indispensable regulators of global element cycles owing to their unique ability to decompose and remineralize dissolved organic matter. These microorganisms in surface waters worldwide exhibit pronounced seasonal succession patterns, governed by physicochemical factors (e.g., light, climate, and nutrient loading) that are determined by latitude and distance to shore. Moreover, we emphasize that the effects of large-scale factors are modulated regionally, and over shorter timespans (days to weeks), by biological interactions including molecule exchanges, viral lysis, and grazing. Thus the interplay and scaling between factors ultimately determine the success of particular bacterial populations. Spatiotemporal surveys of bacterioplankton community composition provide the necessary frame for interpreting how the distinct metabolisms encoded in the genomes of different bacteria regulate biogeochemical cycles.

  • 25.
    Dupont, Chris L.
    et al.
    J. Craig Venter Institute, USA.
    Larsson, John
    Stockholm University.
    Yooseph, Shibu
    J. Craig Venter Institute, USA.
    Ininbergs, Karolina
    Stockholm University.
    Goll, Johannes
    J. Craig Venter Institute, USA.
    Asplund-Samuelsson, Johannes
    Stockholm University.
    McCrow, John P.
    J. Craig Venter Institute, USA.
    Celepli, Narin
    Stockholm University.
    Allen, Lisa Zeigler
    J. Craig Venter Institute, USA.
    Ekman, Martin
    Stockholm University.
    Lucas, Andrew J.
    Hagström, Åke
    University of Gothenburg.
    Thiagarajan, Mathangi
    Brindefalk, Bjorn
    Richter, Alexander R.
    Andersson, Anders F.
    Tenney, Aaron
    Lundin, Daniel
    KTH Royal Institute of Technology.
    Tovchigrechko, Andrey
    Nylander, Johan A. A.
    Brami, Daniel
    Badger, Jonathan H.
    Allen, Andrew E.
    Rusch, Douglas B.
    Hoffman, Jeff
    Norrby, Erling
    Friedman, Robert
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Venter, J. Craig
    Bergman, Birgitta
    Functional Tradeoffs Underpin Salinity-Driven Divergence in Microbial Community Composition2014In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 9, no 2, article id e89549Article in journal (Refereed)
    Abstract [en]

    Bacterial community composition and functional potential change subtly across gradients in the surface ocean. In contrast, while there are significant phylogenetic divergences between communities from freshwater and marine habitats, the underlying mechanisms to this phylogenetic structuring yet remain unknown. We hypothesized that the functional potential of natural bacterial communities is linked to this striking divide between microbiomes. To test this hypothesis, metagenomic sequencing of microbial communities along a 1,800 km transect in the Baltic Sea area, encompassing a continuous natural salinity gradient from limnic to fully marine conditions, was explored. Multivariate statistical analyses showed that salinity is the main determinant of dramatic changes in microbial community composition, but also of large scale changes in core metabolic functions of bacteria. Strikingly, genetically and metabolically different pathways for key metabolic processes, such as respiration, biosynthesis of quinones and isoprenoids, glycolysis and osmolyte transport, were differentially abundant at high and low salinities. These shifts in functional capacities were observed at multiple taxonomic levels and within dominant bacterial phyla, while bacteria, such as SAR11, were able to adapt to the entire salinity gradient. We propose that the large differences in central metabolism required at high and low salinities dictate the striking divide between freshwater and marine microbiomes, and that the ability to inhabit different salinity regimes evolved early during bacterial phylogenetic differentiation. These findings significantly advance our understanding of microbial distributions and stress the need to incorporate salinity in future climate change models that predict increased levels of precipitation and a reduction in salinity.

  • 26.
    Fahlgren, Camilla
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Gómez-Consarnau, Laura
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Zabori, Julia
    Stockholm Univ, Sweden.
    Lindh, Markus V.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Krejci, Radovan
    Stockholm Univ, Sweden.
    Mårtensson, E. Monica
    Stockholm Univ, Sweden ; Uppsala Univ, Sweden.
    Nilsson, Douglas
    Stockholm Univ, Sweden.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Seawater mesocosm experiments in the Arctic uncover differential transfer of marine bacteria to aerosols2015In: Environmental Microbiology Reports, ISSN 1758-2229, E-ISSN 1758-2229, Vol. 7, no 3, p. 460-470Article in journal (Refereed)
    Abstract [en]

    Biogenic aerosols critically control atmospheric processes. However, although bacteria constitute major portions of living matter in seawater, bacterial aerosolization from oceanic surface layers remains poorly understood. We analysed bacterial diversity in seawater and experimentally generated aerosols from three Kongsfjorden sites, Svalbard. Construction of 16S rRNA gene clone libraries from paired seawater and aerosol samples resulted in 1294 sequences clustering into 149 bacterial and 34 phytoplankton operational taxonomic units (OTUs). Bacterial communities in aerosols differed greatly from correspondingseawater communities in three out of four experiments. Dominant populations of both seawater and aerosols were Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria. Across the entire dataset, most OTUs from seawater could also be found in aerosols; in each experiment, however, several OTUs were either selectively enriched in aerosols or little aerosolized. Notably, a SAR11 clade OTU was consistently abundant in the seawater, but was recorded insignificantly lower proportions in aerosols. A strikingly high proportion of colony-forming bacteria were pigmented in aerosols compared with seawater, suggesting that selection during aerosolization contributes to explaining elevated proportions of pigmented bacteria frequently observed in atmospheric samples. Our findings imply that atmospheric processes could be considerably influenced by spatiotemporal variations in the aerosolization efficiency of different marine bacteria.

  • 27. Fernandez-Gomez, Beatriz
    et al.
    Richter, Michael
    Schueler, Margarete
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Acinas, Silvia G.
    Gonzalez, Jose M.
    Pedros-Alio, Carlos
    Ecology of marine Bacteroidetes: a comparative genomics approach2013In: The ISME Journal, ISSN 1751-7362, E-ISSN 1751-7370, Vol. 7, no 5, p. 1026-1037Article in journal (Refereed)
    Abstract [en]

    Bacteroidetes are commonly assumed to be specialized in degrading high molecular weight (HMW) compounds and to have a preference for growth attached to particles, surfaces or algal cells. The first sequenced genomes of marine Bacteroidetes seemed to confirm this assumption. Many more genomes have been sequenced recently. Here, a comparative analysis of marine Bacteroidetes genomes revealed a life strategy different from those of other important phyla of marine bacterioplankton such as Cyanobacteria and Proteobacteria. Bacteroidetes have many adaptations to grow attached to particles, have the capacity to degrade polymers, including a large number of peptidases, glycoside hydrolases (GHs), glycosyl transferases, adhesion proteins, as well as the genes for gliding motility. Several of the polymer degradation genes are located in close association with genes for TonB-dependent receptors and transducers, suggesting an integrated regulation of adhesion and degradation of polymers. This confirmed the role of this abundant group of marine bacteria as degraders of particulate matter. Marine Bacteroidetes had a significantly larger number of proteases than GHs, while non-marine Bacteroidetes had equal numbers of both. Proteorhodopsin containing Bacteroidetes shared two characteristics: small genome size and a higher number of genes involved in CO2 fixation per Mb. The latter may be important in order to survive when floating freely in the illuminated, but nutrient-poor, ocean surface. The ISME Journal (2013) 7, 1026-1037; doi:10.1038/ismej.2012.169; published online 10 January 2013

  • 28.
    Forss, Jörgen
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Engineering.
    Lindh, Markus V.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Science and Engineering, School of Engineering. Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Welander, Ulrika
    Linnaeus University, Faculty of Science and Engineering, School of Engineering.
    Biotreatment of actual textile wastewater in a continuous biofilter and the associated bacterial and fungal microflora.Manuscript (preprint) (Other academic)
    Abstract [en]

    Textile processes use many different chemicals, most of which ends up in wastewater. Coloring of clothes is a particularly troublesome process since both azo and anthraquinone dyes are recalcitrant to degradation, causing environmental concerns. Hence, there is a great need to investigate and develop safe and applicable systems to the water demanding industry, such as textile mills in developing countries.

    In the present study biodegradation of actual textile wastewater (containing azo and anthraquinone dyes) was evaluated in biofilters. Indigenous decolourants from rice husks were used in bioreactors and the degradation was analyzed with spectrophotometer and liquid chromatography coupled with mass spectrometry (LC/MS/MS) to monitor metabolites, especially in the form of aromatic amines. Chemical characteristics of the water were and bacterial and fungal community composition was monitored by denaturing gradient gel glectrophoresis (DGGE) analysis and subsequent sequencing of the 16S rRNA and ITS gene fragments.

    The indigenous microflora consistently performed over 90% decolorization at a hydraulic retention time of 67 h. The molecular fingerprinting revealed the presence of bacteria such as Clostridium, Pseudomonadales, Xenophilus, Paenibacillus, Acinetobacter and Sphingomonas, all known to carry genes for azoreductases.  Furthermore, results showed that fungi were present in the biofilter, and were predominant in the aerobic reactors.

    Collectively, these results indicate that the developed biofilter with rice husks support a mixed microbial community of both bacteria and fungi, with key features contributing to an efficient and reliable degradation performance of actual textile wastewater.

  • 29.
    Forss, Jörgen
    et al.
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Lindh, Markus V.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Welander, Ulrika
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Microbial biotreatment of actual textile wastewater in a continuous sequential rice husk biofilter and the microbial community involved2017In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 12, no 1, article id e0170562Article in journal (Refereed)
    Abstract [en]

    Textile dying processes often pollute wastewater with recalcitrant azo and anthraquinone dyes. Yet, there is little development of effective and affordable degradation systems for textile wastewater applicable in countries where water technologies remain poor. We determined biodegradation of actual textile wastewater in biofilters containing rice husks by spectrophotometry and liquid chromatography mass spectrometry. The indigenous microflora from the rice husks consistently performed >90% decolorization at a hydraulic retention time of 67 h. Analysis of microbial community composition of bacterial 16S rRNA genes and fungal internal transcribed spacer (ITS) gene fragments in the biofilters revealed a bacterial consortium known to carry azoreductase genes, such as Dysgonomonas, and Pseudomonas and the presence of fungal phylotypes such as Gibberella and Fusarium. Our findings emphasize that rice husk biofilters support a microbial community of both bacteria and fungi with key features for biodegradation of actual textile wastewater. These results suggest that microbial processes can substantially contribute to efficient and reliable degradation of actual textile wastewater. Thus, development of biodegradation systems holds promise for application of affordable wastewater treatment in polluted environments.

  • 30.
    Forss, Jörgen
    et al.
    Linnaeus University, Faculty of Technology, Department of Building and Energy Technology.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Lindh, Markus V.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Welander, Ulrika
    Linnaeus University, Faculty of Technology, Department of Building and Energy Technology.
    Microbial diversity in a continuous system based on rice husks for biodegradation of the azo dyes Reactive Red 2 and Reactive Black 52013In: Bioresource Technology, ISSN 0960-8524, E-ISSN 1873-2976, Vol. 130, p. 681-688Article in journal (Refereed)
    Abstract [en]

    In the present study the degradation of two common azo dyes used in dye houses today, Reactive Black 5 and Reactive Red 2 was evaluated in biofilters. In two experiments, bioreactors performed over 80% decolorization at a hydraulic retention time of only 28.4 h with little production of metabolites. Molecular analyses showed a diverse and dynamic bacterial community composition in the bioreactors, including members of the Bacteroidetes, Acinetobacter (Gammaproteobacteria) and Clostridium (Firmicutes) that possess the capacity to reduce azo dyes. Collectively, the results indicate that the development of mixed bacterial communities from natural biomaterials contributes to an efficient and robust degradation performance in bioreactors even at high concentration of dyes.

  • 31. Gasol, J. M.
    et al.
    Pinhassi, Jarone
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Alonso-Saez, L.
    Ducklow, H.
    Herndl, G. J.
    Koblizek, M.
    Labrenz, M.
    Luo, Y.
    Moran, X. A. G.
    Reinthaler, T.
    Simon, M.
    Towards a better understanding of the microbial carbon flux in the sea2008In: Aquatic Microbial Ecology, ISSN 0948-3055, E-ISSN 1616-1564, Vol. 53, p. 21-38Article in journal (Refereed)
    Abstract [en]

    We now have a relatively good idea of how bulk microbial processes shape the cycling of organic matter and nutrients in the sea. The advent of the molecular biology era in microbial ecology has resulted in advanced knowledge about the diversity of marine microorganisms, suggesting that we might have reached a high level of understanding of carbon fluxes in the oceans. However, it is becoming increasingly clear that there are large gaps in the understanding of the role of bacteria in regulating carbon fluxes. These gaps may result from methodological as well as conceptual limitations. For example, should bacterial production be measured in the light? Can bacterial production conversion factors be predicted, and how are they affected by loss of tracers through respiration? Is it true that respiration is relatively constant compared to production? How can accurate measures of bacterial growth efficiency be obtained? In this paper, we discuss whether such questions could (or should) be addressed. Ongoing genome analyses are rapidly widening our understanding of possible metabolic pathways and cellular adaptations used by marine bacteria in their quest for resources and struggle for survival (e.g. utilization of light, acquisition of nutrients, predator avoidance, etc.). Further, analyses of the identity of bacteria using molecular markers (e.g. subgroups of Bacteria and Archaea) combined with activity tracers might bring knowledge to a higher level. Since bacterial growth (and thereby consumption of DOC and inorganic nutrients) is likely regulated differently in different bacteria, it will be critical to learn about the life strategies of the key bacterial species to achieve a comprehensive understanding of bacterial regulation of C fluxes. Finally, some processes known to occur in the microbial food web are hardly ever characterized and are not represented in current food web models. We discuss these issues and offer specific comments and advice for future research agendas.

  • 32. Gasol, J.M.
    et al.
    Doval, M D
    Pinhassi, Jarone
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Calderon-Paz, J I
    Guixa-Boixareu, N
    VaquZ, D
    Pedros-Alio, C
    Diel variations in bacterial heterotrophic activity and growth in the northwestern Mediterranean1998In: Marine Ecology Progress Series, Vol. 164, p. 107-124Article in journal (Refereed)
  • 33.
    Gomez-Consarnau, Laura
    et al.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Gonzalez, J M
    Coll-Llado, Montserrat
    Gourdon, Pontus
    Pascher, Torbjörn
    Neutze, Richard
    Pedros-Alio, C
    Pinhassi, Jarone
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Light stimulates growth of proteorhodopsin-containing marine Flavobacteria2007In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 445, p. 210-213Article in journal (Refereed)
  • 34. Gomila, Marga
    et al.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Falsen, Enevold
    Moore, Edward
    Lalucat, Jorge
    Kinneretia asaccharophila, gen. nov., sp. nov., isolated from fresh water, a novel member of the Rubrivivax-branch of the family Comamonadaceae2010In: International Journal of Systematic and Evolutionary Microbiology, ISSN 1466-5026, E-ISSN 1466-5034, Vol. 60, p. 809-814Article in journal (Refereed)
    Abstract [en]

    A strictly aerobic, Gram-negative bacterium, strain KIN192(T), isolated from fresh water from Lake Kinneret, Israel, was examined using a polyphasic approach to characterize and clarify its phylogenetic and taxonomic position. Sequences of the 16S rRNA and gyrB genes and ITS1 revealed close relationships to species of the genera Pelomonas, Mitsuaria and Roseateles, in the Rubrivivax branch of the family Comamonadaceae of the Betaproteobacteria. Physiological and biochemical tests, cellular fatty acid analysis and DNA-DNA hybridizations indicated that this strain should be assigned to a new genus and species in the Rubrivivax phylogenetic branch, for which the name Kinneretia asaccharophila gen. nov., sp. nov., is proposed. The type strain of Kinneretia asaccharophila is strain KIN192(T) (=CCUG 53117(T) =CECT 7319(T)).

  • 35. Gonzalez, J. M.
    et al.
    Fernandez-Gomez, B.
    Fernandez-Guerra, A.
    Gomez-Consarnau, Laura
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Sanchez, O.
    Coll-Llado, M.
    del Campo, J.
    Escudero, L.
    Rodriguez-Martinez, R.
    Alonso-Saez, L.
    Latasa, M.
    Paulsen, I.
    Nedashkovskaya, O. I.
    Lekunberri, I.
    Pinhassi, Jarone
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Pedros-Alio, C.
    Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp. MED152 (Flavobacteria)2008In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 105, no 25, p. 8724-8729Article in journal (Refereed)
    Abstract [en]

    Analysis of marine cyanobacteria and proteobacteria genomes has provided a profound understanding of the life strategies of these organisms and their ecotype differentiation and metabolisms. However, a comparable analysis of the Bacteroidetes, the third major bacterioplankton group, is still lacking. In the present paper, we report on the genome of Polaribacter sp. strain MED152. On the one hand, MED152 contains a substantial number of genes for attachment to surfaces or particles, gliding motility, and polymer degradation. This agrees with the currently assumed life strategy of marine Bacteroidetes. On the other hand, it contains the proteorhoclopsin gene, together with a remarkable suite of genes to sense and respond to light, which may provide a survival advantage in the nutrient-poor sun-lit ocean surface when in search of fresh particles to colonize. Furthermore, an increase in CO2 fixation in the light suggests that the limited central metabolism is complemented by anaplerotic inorganic carbon fixation. This is mediated by a unique combination of membrane transporters and carboxylases. This suggests a dual life strategy that, if confirmed experimentally, would be notably different from what is known of the two other main bacterial groups (the autotrophic cyanobacteria and the heterotrophic proteobacteria) in the surface oceans. The Polaribacter genome provides insights into the physiological capabilities of proteorhodopsin-containing bacteria. The genome will serve as a model to study the cellular and molecular processes in bacteria that express proteorhoclopsin, their adaptation to the oceanic environment, and their role in carbon-cycling.

  • 36. González, J. M.
    et al.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Fernández-Gómez, B.
    Coll-Lladó, M.
    González-Velázquez, M.
    Puigbò, P.
    Jaenicke, S.
    Gómez-Consarnau, Laura
    Department of Biological Sciences, University of Southern California, Los Angeles, California 90089.
    Fernàndez-Guerra, A.
    Goesmann, A.
    Pedrós-Alió, C.
    Genomics of the proteorhodopsin-containing marine flavobacterium Dokdonia sp. strain MED1342011In: Applied and Environmental Microbiology, ISSN 0099-2240, E-ISSN 1098-5336, Vol. 77, no 24, p. 8676-8686Article in journal (Refereed)
    Abstract [en]

    Analysis of marine cyanobacteria and proteobacteria genomes has provided a profound understanding of the life strategies of these organisms and their ecotype differentiation and metabolisms. However, a comparable analysis of the Bacteroidetes, the third major bacterioplankton group, is still lacking. In the present paper, we report on the genome of Polaribacter sp. strain MED152. On the one hand, MED152 contains a substantial number of genes for attachment to surfaces or particles, gliding motility, and polymer degradation. This agrees with the currently assumed life strategy of marine Bacteroidetes. On the other hand, it contains the proteorhodopsin gene, together with a remarkable suite of genes to sense and respond to light, which may provide a survival advantage in the nutrient-poor sun-lit ocean surface when in search of fresh particles to colonize. Furthermore, an increase in CO2 fixation in the light suggests that the limited central metabolism is complemented by anaplerotic inorganic carbon fixation. This is mediated by a unique combination of membrane transporters and carboxylases. This suggests a dual life strategy that, if confirmed experimentally, would be notably different from what is known of the two other main bacterial groups (the autotrophic cyanobacteria and the heterotrophic proteobacteria) in the surface oceans. The Polaribacter genome provides insights into the physiological capabilities of proteorhodopsin-containing bacteria. The genome will serve as a model to study the cellular and molecular processes in bacteria that express proteorhodopsin, their adaptation to the oceanic environment, and their role in carbon-cycling.

  • 37. Gourdon, P.
    et al.
    Alfredsson, A.
    Pedersen, A.
    Malmerberg, E.
    Nyblom, M.
    Widell, M.
    Berntsson, R.
    Pinhassi, Jarone
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Braiman, M.
    Hansson, Ö.
    Bonander, N.
    Karlsson, G.
    Neutze, R.
    Optimized in vitro and in vivo expression of proteorhodopsin: a seven-transmembrane proton pump2008In: Protein Expression and Purification, ISSN 1046-5928, E-ISSN 1096-0279, Vol. 58, p. 103-113Article in journal (Refereed)
  • 38.
    Gómez-Consarnau, Laura
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Akram, Neelam
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Lindell, Kristoffer
    Pedersen, Anders
    Neutze, Richard
    Milton, Debra L.
    González, José M.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation2010In: PLoS biology, ISSN 1544-9173, E-ISSN 1545-7885, Vol. 8, no 4, p. 1-10Article in journal (Refereed)
    Abstract [en]

    Proteorhodopsins are globally abundant photoproteins found in bacteria in the photic zone of the ocean. Although their function as proton pumps with energy-yielding potential has been demonstrated, the ecological role of proteorhodopsins remains largely unexplored. Here, we report the presence and function of proteorhodopsin in a member of the widespread genus Vibrio, uncovered through whole-genome analysis. Phylogenetic analysis suggests that the Vibrio strain AND4 obtained proteorhodopsin through lateral gene transfer, which could have modified the ecology of this marine bacterium. We demonstrate an increased long-term survival of AND4 when starved in seawater exposed to light rather than held in darkness. Furthermore, mutational analysis provides the first direct evidence, to our knowledge, linking the proteorhodopsin gene and its biological function in marine bacteria. Thus, proteorhodopsin phototrophy confers a fitness advantage to marine bacteria, representing a novel mechanism for bacterioplankton to endure frequent periods of resource deprivation at the ocean’s surface.

  • 39.
    Gómez-Consarnau, Laura
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Lindh, Markus V.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Gasol, Josep M.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Structuring of bacterioplankton communities by specific dissolved organic carbon compounds2012In: Environmental Microbiology, ISSN 1462-2912, E-ISSN 1462-2920, Vol. 14, no 9, p. 2361-2378Article in journal (Refereed)
    Abstract [en]

    The main role of microorganisms in the cycling of the bulk dissolved organic carbon pool in the ocean is well established. Nevertheless, it remains unclear if particular bacteria preferentially utilize specific carbon compounds and whether such compounds have the potential to shape bacterial community composition. Enrichment experiments in the Mediterranean Sea, Baltic Sea and the North Sea (Skagerrak) showed that different low-molecular-weight organic compounds, with a proven importance for the growth of marine bacteria (e.g. amino acids, glucose, dimethylsulphoniopropionate, acetate or pyruvate), in most cases differentially stimulated bacterial growth. Denaturing gradient gel electrophoresis fingerprints and 16S rRNA gene sequencing revealed that some bacterial phylotypes that became abundant were highly specific to enrichment with specific carbon compounds (e.g. Acinetobacter sp. B1-A3 with acetate or Psychromonas sp. B3-U1 with glucose). In contrast, other phylotypes increased in relative abundance in response to enrichment with several, or all, of the investigated carbon compounds (e.g. Neptuniibacter sp. M2-A4 with acetate, pyruvate and dimethylsulphoniopropionate, and Thalassobacter sp. M3-A3 with pyruvate and amino acids). Furthermore, different carbon compounds triggered the development of unique combinations of dominant phylotypes in several of the experiments. These results suggest that bacteria differ substantially in their abilities to utilize specific carbon compounds, with some bacteria being specialists and others having a more generalist strategy. Thus, changes in the supply or composition of the dissolved organic carbon pool can act as selective forces structuring bacterioplankton communities.

  • 40.
    Hagström, Åke
    et al.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Pinhassi, Jarone
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Zweifel, Ulla Li
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Biogeographical diversity among marine bacterioplankton2000In: Aquatic Microbial Ecology, ISSN 0948-3055, E-ISSN 1616-1564, Vol. 21, p. 231-244Article in journal (Refereed)
  • 41.
    Hagström, Åke
    et al.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Pinhassi, Jarone
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Zweifel, Ulla Li
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Marine bacterioplankton show bursts of rapid growth induced by substrate shifts2001In: Aquatic Microbial Ecology, ISSN 0948-3055, E-ISSN 1616-1564, Vol. 24, p. 109-115Article in journal (Refereed)
  • 42.
    Hugerth, Luisa W.
    et al.
    KTH Royal Institute of Technology.
    Larsson, John
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Alneberg, Johannes
    KTH Royal Institute of Technology.
    Lindh, Markus V.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Legrand, Catherine
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Andersson, Anders F.
    KTH Royal Institute of Technology.
    Metagenome-assembled genomes uncover a global brackish microbiome2015In: Genome Biology, ISSN 1465-6906, E-ISSN 1474-760X, Vol. 16, article id 279Article in journal (Refereed)
    Abstract [en]

    Background: Microbes are main drivers of biogeochemical cycles in oceans and lakes. Although the genome is a foundation for understanding the metabolism, ecology and evolution of an organism, few bacterioplankton genomes have been sequenced, partly due to difficulties in cultivating them. Results: We use automatic binning to reconstruct a large number of bacterioplankton genomes from a metagenomic time-series from the Baltic Sea, one of world's largest brackish water bodies. These genomes represent novel species within typical freshwater and marine clades, including clades not previously sequenced. The genomes' seasonal dynamics follow phylogenetic patterns, but with fine-grained lineage-specific variations, reflected in gene-content. Signs of streamlining are evident in most genomes, and estimated genome sizes correlate with abundance variation across filter size fractions. Comparing thegenomes with globally distributed metagenomes reveals significant fragment recruitment at high sequence identity from brackish waters in North America, but little from lakes or oceans. This suggests the existence of a global brackish metacommunity whose populations diverged from freshwater and marine relatives over 100,000 years ago, long before the Baltic Sea was formed (8000 years ago). This markedly contrasts to most Baltic Sea multicellular organisms, which are locally adapted populations of freshwater or marine counterparts. Conclusions: We describe the gene content, temporal dynamics and biogeography of a large set of new bacterioplankton genomes assembled from metagenomes. We propose that brackish environments exert such strong selection that lineages adapted to them flourish globally with limited influence from surrounding aquatic communities.

  • 43.
    Hultin, Kim A. H.
    et al.
    Stockholm University.
    Krejci, Radovan
    Stockholm University.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Gómez-Consarnau, Laura
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Mårtensson, E. Monica
    Stockholm University.
    Hagström, Åke
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Nilsson, E. Douglas
    Stockholm University.
    Aerosol and bacterial emissions from Baltic Seawater2011In: Atmospheric research, ISSN 0169-8095, E-ISSN 1873-2895, Vol. 99, no 1, p. 1-14Article in journal (Refereed)
    Abstract [en]

    Factors influencing the production of primary marine aerosol are of great importance to better understand the marine aerosols' impact on our climate. Bubble-bursting from whitecaps is considered the most effective mechanism for sea spray production, and a way of sea-air transfer for some bacterial species. Two coastal sites in the Baltic Sea were used to investigate aerosol and bacterial emissions from the bubble-bursting process by letting a jet of water hit a water surface within an experimental tank, mimicking the actions of breaking waves. The aerosol size distribution spectra from the two sites were similar and conservative in shape where the modes were centered at about 200 nm dry diameter. We found a distinct decrease in bubbled aerosol production with increasing water temperature. A clear diurnal cycle in bubbled aerosol production was observed, anticorrelated with both water temperature and dissolved oxygen, which to our knowledge has never been shown before. A link between decreasing aerosol production in daytime and phytoplankton activity is likely to be an important factor. Colony-forming bacteria were transferred to the atmosphere via the bubble-bursting process, with a linear relationship to their seawater concentration.

  • 44.
    Israelsson, Stina
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Bunse, Carina
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Baltar, Federico
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. University of Otago, New Zealand.
    Bertos-Fortis, Mireia
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Fridolfsson, Emil
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Legrand, Catherine
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Lindehoff, Elin
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Lindh, Markus V.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Lund University.
    Martinez-Garcia, Sandra
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Universidade de Vigo, Spain.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Seasonal dynamics of Baltic Sea plankton activities: heterotrophic bacterial function under different biological and environmental conditionsManuscript (preprint) (Other academic)
  • 45. Johansen, J.F.
    et al.
    Blackburn, N.
    Pinhassi, Jarone
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Zweifel, Ulla Li
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Hagström, Åke
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Large Variability in Motility Characteristics among Marine Bacteria.2002In: Aquatic Microbial Ecology, ISSN 0948-3055, E-ISSN 1616-1564, Vol. 28, p. 229-237Article in journal (Refereed)
  • 46.
    Legrand, Catherine
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Fridolfsson, Emil
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Bertos-Fortis, Mireia
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Lindehoff, Elin
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Larsson, Per
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Andersson, Agneta
    Umeå University.
    Interannual variability of phyto-bacterioplankton biomass and production in coastal and offshore waters of the Baltic Sea2015In: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 44, no supplement 3, p. S427-S438Article in journal (Refereed)
    Abstract [en]

    The microbial part of the pelagic food web is seldom characterized in models despite its major contribution to biogeochemical cycles. In the Baltic Sea, spatial and temporal high frequency sampling over three years revealed changes in heterotrophic bacteria and phytoplankton coupling (biomass and production) related to hydrographic properties of the ecosystem. Phyto- and bacterioplankton were bottom-up driven in both coastal and offshore areas. Cold winter temperature was essential for phytoplankton to conform to the successional sequence in temperate waters. In terms of annual carbon production, the loss of the spring bloom (diatoms and dinoflagellates) after mild winters tended not to be compensated for by other taxa, not even summer cyanobacteria. These results improve our ability to project Baltic Sea ecosystem response to short- and long-term environmental changes.

  • 47.
    Lekunberri, Itziar
    et al.
    CSIC, Inst Ciencias Mar.
    Gasol, Josep M.
    CSIC, Inst Ciencias Mar.
    Acinas, Silvia G.
    CSIC, Inst Ciencias Mar.
    Gómez-Consarnau, Laura
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. CSIC, Inst Ciencias Mar.
    Crespo, Bibiana G.
    CSIC, Inst Ciencias Mar.
    Casamayor, Emilio O.
    CSIC, Ctr Estud Avancats Blanes.
    Massana, Ramon
    CSIC, Inst Ciencias Mar.
    Pedrós-Alió, Carlos
    CSIC, Inst Ciencias Mar.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    The phylogenetic and ecological context of cultured and whole genome-sequenced planktonic bacteria from the coastal NW Mediterranean Sea2014In: Systematic and Applied Microbiology, ISSN 0723-2020, E-ISSN 1618-0984, Vol. 37, no 3, p. 216-228Article in journal (Refereed)
    Abstract [en]

    Microbial isolates are useful models for physiological and ecological studies and can also be used to reassemble genomes from metagenomic analyses. However, the phylogenetic diversity that can be found among cultured marine bacteria may vary significantly depending on the isolation. Therefore, this study describes a set of 136 bacterial isolates obtained by traditional isolation techniques from the Blanes Bay Microbial Observatory, of which seven strains have had the whole genome sequenced. The complete set was compared to a series of environmental sequences obtained by culture-independent techniques (60 DGGE sequences and 303 clone library sequences) previously obtained by molecular methods. In this way, each isolate was placed in both its "ecological" (time of year, nutrient limitation, chlorophyll and temperature values) context or setting, and its "phylogenetic" landscape (i.e. similar organisms that were found by culture-independent techniques, when they were relevant, and when they appeared). Nearly all isolates belonged to the Gammaproteobacteria, Alphaproteobacteria, or the Bacteroidetes (70, 40 and 20 isolates, respectively). Rarefaction analyses showed similar diversity patterns for sequences from isolates and molecular approaches, except for Alphaproteobacteria where cultivation retrieved a higher diversity per unit effort. Approximately 30% of the environmental clones and isolates formed microdiversity clusters constrained at 99% 16S rRNA gene sequence identity, but the pattern was different in Bacteroidetes (less microdiversity) than in the other main groups. Seventeen cases (12.5%) of nearly complete (98-100%) rRNA sequence identity between isolates and environmental sequences were found: nine in the Alphaproteobacteria, five in the Gammaproteobacteria, and three in the Bacteroidetes, indicating that cultivation could be used to obtain at least some organisms representative of the various taxa detected by molecular methods. Collectively, these results illustrated the largely unexplored potential of culturing on standard media for complementing the study of microbial diversity by culture-independent techniques and for obtaining phylogenetically distinct model organisms from natural seawater.

  • 48.
    Lindh, Markus V.
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Figueroa, Daniela
    Umeå University.
    Sjöstedt, Johanna
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Baltar, Federico
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. University of Otago, New Zealand.
    Lundin, Daniel
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Andersson, Agneta
    Umeå University.
    Legrand, Catherine
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Transplant experiments uncover Baltic Sea basin-specific responses in bacterioplankton community composition and metabolic activities2015In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 6, article id 223Article in journal (Refereed)
    Abstract [en]

    Anthropogenically induced changes in precipitation are projected to generate increased river runoff to semi-enclosed seas, increasing loads of terrestrial dissolved organic matter and decreasing salinity. To determine how bacterial community structure and functioning adjust to such changes, we designed microcosm transplant experiments with Baltic Proper (salinity 7.2) and Bothnian Sea (salinity 3.6) water. Baltic Proper bacteria generally reached higher abundances than Bothnian Sea bacteria in both Baltic Proper and Bothnian Sea water, indicating higher adaptability. Moreover, Baltic Proper bacteria growing in Bothnian Sea water consistently showed highest bacterial production and beta-glucosidase activity. These metabolic responses were accompanied by basin-specific changes in bacterial community structure. For example, Baltic Proper Pseudomonas and Limnobacter populations increased markedly in relative abundance in Bothnian Sea water, indicating a replacement effect. In contrast, Roseobacter and Rheinheimera populations were stable or increased in abundance when challenged by either of the waters, indicating an adjustment effect. Transplants to Bothnian Sea water triggered the initial emergence of particular Burkholderiaceae populations, and transplants to Baltic Proper water triggered Alteromonadaceae populations. Notably, in the subsequent re-transplant experiment, a priming effect resulted in further increases to dominance of these populations. Correlated changes in community composition and metabolic activity were observed only in the transplant experiment and only at relatively high phylogenetic resolution. This suggested an importance of successional progression for interpreting relationships between bacterial community composition and functioning. We infer that priming effects on bacterial community structure by natural episodic events or climate change induced forcing could translate into long-term changes in bacterial ecosystem process rates.

  • 49.
    Lindh, Markus V.
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Lefebure, Robert
    Marine Stewardship Council, UK.
    Degerman, Rickard
    Umeå Univ.
    Lundin, Daniel
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Andersson, Agneta
    Umeå Univ.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Consequences of increased terrestrial dissolved organic matter and temperature on bacterioplankton community composition during a Baltic Sea mesocosm experiment2015In: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 44, no Supplement 3, p. S402-S412Article in journal (Refereed)
    Abstract [en]

    Predicted increases in runoff of terrestrial dissolved organic matter (DOM) and sea surface temperatures implicate substantial changes in energy fluxes of coastal marine ecosystems. Despite marine bacteria being critical drivers of marine carbon cycling, knowledge of compositional responses within bacterioplankton communities to such disturbances is strongly limited. Using 16S rRNA gene pyrosequencing, we examined bacterioplankton population dynamics in Baltic Sea mesocosms with treatments combining terrestrial DOM enrichment and increased temperature. Among the 200 most abundant taxa, 62 % either increased or decreased in relative abundance under changed environmental conditions. For example, SAR11 and SAR86 populations proliferated in combined increased terrestrial DOM/temperature mesocosms, while the hgcI and CL500-29 clades (Actinobacteria) decreased in the same mesocosms. Bacteroidetes increased in both control mesocosms and in the combined increased terrestrial DOM/temperature mesocosms. These results indicate considerable and differential responses among distinct bacterial populations to combined climate change effects, emphasizing the potential of such effects to induce shifts in ecosystem function and carbon cycling in the future Baltic Sea.

  • 50.
    Lindh, Markus V.
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Riemann, Lasse
    Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark.
    Baltar, Federico
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Romero-Oliva, Claudia
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Salomon, Paulo
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Granéli, Edna
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Consequences of increased temperature and acidification on bacterioplankton community composition during a mesocosm spring bloom in the Baltic Sea2013In: Environmental Microbiology Reports, ISSN 1758-2229, E-ISSN 1758-2229, Vol. 5, no 2, p. 252-262Article in journal (Refereed)
    Abstract [en]

    Despite the paramount importance of bacteria for biogeochemical cycling of carbon and nutrients, little is known about the potential effects of climate change on these key organisms. The consequences of the projected climate change on bacterioplankton community dynamics were investigated in a Baltic Sea spring phytoplankton bloom mesocosm experiment by increasing temperature with 3°C and decreasing pH by approximately 0.4 units via CO2 addition in a factorial design. Temperature was the major driver of differences in community composition during the experiment, as shown by denaturing gradient gel electrophoresis (DGGE) of amplified 16S rRNA gene fragments. Several bacterial phylotypes belonging to Betaproteobacteria were predominant at 3°C but were replaced by members of the Bacteriodetes in the 6°C mesocosms. Acidification alone had a limited impact on phylogenetic composition, but when combined with increased temperature, resulted in the proliferation of specific microbial phylotypes. Our results suggest that although temperature is an important driver in structuring bacterioplankton composition, evaluation of the combined effects of temperature and acidification is necessary to fully understand consequences of climate change for marine bacterioplankton, their implications for future spring bloom dynamics, and their role in ecosystem functioning.

12 1 - 50 of 85
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf