lnu.sePublications
Change search
Refine search result
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Hansson, Henrik
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Reduction of Pollutants in Stormwaterand Processwater from the WoodIndustry by Electrocoagulation2010Independent thesis Advanced level (degree of Master (One Year)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Although wood floor production does not use water in the production process, water consumptionis related to cleaning and washing of floor and machineries in different steps of the process line,which generate a number of small flows that are highly polluted.Besides this, the industry has a need to store large amounts of wood outside to be able to havecontinuity in the production. This takes up a lot of space outdoors and once it rains the water thathas been in contact with wood, oil and metals forms stormwater, which transports pollutants.Stormwater has for a long time not been seen as a problem and has often been discharged intorecipient water bodies without any treatment. During cold seasons, this also involves snowmelt thatcan transport high concentrations of different pollutants.This report describes the composition of process- and stormwater from a wood floor industry inNybro, Sweden regarding parameters such as COD, phenol, tannin and lignin. The concentrationsof phenols in the stormwater were found in a range considered toxic to marine life.Regarding the process water, high values was found for COD (Chemical Oxygen Demand) and forother substances and elements potentially toxic (e.g. formaldehyde, wood resins, detergents andmetals). If these waters are directly released to a sewage treatment plant without any pre-treatmentprocess it can disturb the plant treatment efficiency; if released to a recipient water body, it cancause oxygen deficiency and consequently, death to marine life.The possibility of reducing the levels of pollutants through the use of electrocoagulation has beenexamined in this study. This has been done both for process water and stormwater from the woodfloor industry. A 250 ml batch unit for electrocoagulation EC was setup with iron (Fe) andaluminium (Al) electrodes for treating process water and stormwater. The results show that the ECprocess can reduce COD concentration from stormwater at least 70%. On the other hand, lessefficiency of EC for treating process water was observed.A method for simulating a snowmelt period in lab scale was also developed. Snow collected from awood floor industry was melted according to real temperature and the quality of these samples hasthen been compared to on-site samples of stormwater

  • 2.
    Hansson, Henrik
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    TREATMENT OF WASTEWATER GENERATED BY WOOD-BASED DRY INDUSTRIES: ADVANCED OXIDATION PROCESSES & ELECTROCOAGULATION2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Wood is a material with an enormous number of applications. For decades, the development of wastewater treatment technologies tailored for the wood sector has focused on those industries that have water as an integral part of the industrial production, such as paper and pulp. However, there is a large and potentially growing sector that has been neglected, which is formed by industries in which water is not part of their production line, as for example, the wood floor and furniture industries (named wood-based dry industries). These industries still produces relatively low volumes of highly polluted wastewaters, with COD up to 30,000 mg/L, due to cleaning/washing procedure (named cleaning wastewaters). These cleaning wastewaters are often sent to the municipal wastewater treatment plant after dilution with potable water. Once there, recalcitrant pollutants are diluted and discharged into recipient water bodies or trapped in the municipal wastewater sludge. Another type of contaminated water these “dry industries” often generate in high volumes, and which is usually discharged with no previous treatment, is storm-water containing contaminants that have leached from large wood storage areas. The overall aim of this thesis was to increase the level of knowledge and competence and to present on-site wastewater treatment options for wood-based dry industries using the wood floor industry as a case-study, with a focus on combined treatment methods and solutions applicable to both the cleaning wastewater and storm-water. Among the treatment technologies investigated, electrocoagulation was studied both as a standalone treatment and combined with sorption using activated carbon. The combined treatment achieved a COD reduction of approximately 70%. Some advanced oxidation processes (AOP) were also studied: a COD reduction of approximately 70% was achieved by photo-Fenton, but the most successful AOP was ozone combined with UV light, were a COD reduction around 90% was achieved, with additional improvement in the biodegradability of the treated effluent. Ozone also proved to be effective in degrading organic compounds (approximately 70% COD reduction) and enhanced the biodegradability of the storm-water runoff from wood storage areas. The results have shown that the application of ozone can be considered an option for treatment of cleaning wastewaters and possibly for storm-water biodegradation enhancement.

  • 3.
    Hansson, Henrik
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Kaczala, Fabio
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Amaro, Alexandre
    Rio de Janeiro State Univ UERJ, Brazil.
    Marques, Marcia
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Rio de Janeiro State Univ UERJ, Brazil.
    Hogland, William
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Advanced Oxidation Treatment of Recalcitrant Wastewater from a Wood-Based Industry: a Comparative Study of O3 and O3/UV2015In: Water, Air and Soil Pollution, ISSN 0049-6979, E-ISSN 1573-2932, Vol. 226, no 7, article id 229Article in journal (Refereed)
    Abstract [en]

    Ozone and ozone-based advanced oxidation processes were applied for the treatment of a recalcitrant wastewater generated by wood-based industries that contains different inorganic and organic constituents and high chemical oxygen demand (COD) varying between 3,400 and 4,000 mg/L. The investigation used a tubular ozone reactor combined with an UV reactor designed for different hydraulic retention times. The dependent variables addressed to evaluate the treatment efficiency were the reduction of COD and total organic carbon (TOC) and the biodegradability of the treated effluent based on respirometric studies using activated sludge from a wastewater treatment. The results showed that even though ozonation alone at acid pH promoted COD and TOC reductions of 65 and 31 % respectively, a decrease in the biodegradability was observed. The most effective treatment (COD and TOC reductions of 93 and 43 %, respectively) was obtained when applying ozone combined with UV light at basic pH. The ozone-UV combination was capable of increasing the amount of readily available COD by 75 % with an additional reduction of TOC by 60 %. In conclusion, ozonation at low pH effectively reduces the COD content in wastewater generated by the wood-based industry; however, in order to combine advanced oxidation with biological process, ozone combined with UV is recommended.

  • 4.
    Hansson, Henrik
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Kaczala, Fabio
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Marques, Marcia
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences. Rio de Janeiro State University-UERJ, Brazil.
    Hogland, William
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Photo-fenton and fenton oxidation of recalcitrant industrial wastewater2012In: Proceedings / Linnaeus ECO-TECH 2012, international conference on natural sciences and environmental technologies for waste and wastewater treatment, remediation, emissions related to climate, environmental and economic effects ; the eighth International Conference on the Establishment of Cooperation between Companies and Institutions in the Nordic Countries, the Baltic Sea Region, and the World, November 26-28, 2012, Kalmar, Sweden / [ed] Eva Kumar, Joacim Rosenlund, Fabio Kaczala, William Hogland, Linnaeus University , 2012, p. 187-Conference paper (Other academic)
  • 5.
    Hansson, Henrik
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Kaczala, Fabio
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Marques, Marcia
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences. Rio de Janeiro State University, Brazil.
    Hogland, William
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Photo-Fenton and Fenton Oxidation of Recalcitrant Industrial Wastewater Using Nanoscale Zero-Valent Iron2012In: International Journal of Photoenergy (Online), ISSN 1110-662X, E-ISSN 1687-529X, Vol. 2012, article id 531076Article in journal (Refereed)
    Abstract [en]

    There is a need for the development of on-site wastewater treatment technologies suitable for "dry-process industries," such as the wood-floor sector. Due to the nature of their activities, these industries generate lower volumes of highly polluted wastewaters after cleaning activities. Advanced oxidation processes such as Fenton and photo-Fenton, are potentially feasible options for treatment of these wastewaters. One of the disadvantages of the Fenton process is the formation of large amounts of ferrous iron sludge, a constraint that might be overcome with the use of nanoscale zero-valent iron (nZVI) powder. Wastewater from a wood-floor industry with initial COD of 4956 mg/L and TOC of 2730 mg/L was treated with dark-Fenton (nZVI/H2O2) and photo-Fenton (nZVI/H2O2/UV) applying a 2-level full-factorial experimental design. The highest removal of COD and TOC (80% and 60%, resp.) was achieved using photo-Fenton. The supply of the reactants in more than one dose during the reaction time had significant and positive effects on the treatment efficiency. According to the results, Fenton and mostly photo-Fenton are promising treatment options for these highly recalcitrant wastewaters. Future investigations should focus on optimizing treatment processes and assessing toxic effects that residual pollutants and the nZVI might have. The feasibility of combining advanced oxidation processes with biological treatment is also recommended.

  • 6.
    Hansson, Henrik
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Kaczala, Fabio
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Marques, Marcia
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Rio de Janeiro State Univ UERJ, Brazil.
    Hogland, William
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Photo-Fenton and Fenton Oxidation of Recalcitrant Wastewater from the Wooden Floor Industry2015In: Water environment research, ISSN 1061-4303, E-ISSN 1554-7531, Vol. 87, no 6, p. 491-497Article in journal (Refereed)
    Abstract [en]

    There is a need for development of on-site wastewater treatment technologies suitable to "dry-process'' industries, such as the wooden floor sector. Due to the nature of their activities, these industries generate low volumes of highly polluted and recalcitrant wastewaters due to washing and cleaning surfaces and machinery. Advanced oxidation processes such as Fenton and photo-Fenton are potentially feasible options for the treatment of wastewaters with not easily biodegradable pollutants. The wastewater from a wooden floor industry with initial COD value of 4956 mg/L and TOC value of 2730 mg/L was treated with Fenton (Fe/H2O2) and photo-Fenton (Fe/H2O2/UV) applying a 2-level full-factorial experimental design. The highest removals of COD and TOC (79% and 62% respectively) were achieved when photo-Fenton was applied. In conclusion, Fenton and photo-Fenton are promising treatment options for these highly recalcitrant wastewaters, photo-Fenton being a more promising option according to the results.

  • 7.
    Hansson, Henrik
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Marques, Marcia
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Rio de Janeiro State Univ, Brazil.
    Laohaprapanon, Sawanya
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Hogland, William
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Electrocoagulation coupled to activated carbon sorption/filtration for treatment of cleaning wastewaters from wood-based industry2014In: Desalination and Water Treatment, ISSN 1944-3994, E-ISSN 1944-3986, Vol. 52, no 28-30, p. 5243-5251Article in journal (Refereed)
    Abstract [en]

    The objective of this investigation was to study the use of a coupled treatment (electrocoagulation(EC) and sorption/filtration treatment) with different sequencing to reduce the organic pollutantsmeasured as chemical oxygen demand (COD) of five highly polluted wastewater streamsgenerated after washing surfaces and machinery in the wooden floor industry and to evaluate,how different sequencing of these treatment units affects the overall system efficiency. On thebasis of preliminary studies, an EC reactor (1.0 L) was constructed with monopolar electrodes inparallel connection in an array of four Al electrodes with surface area of 93.2 cm2and an appliedcurrent density of 161 A m–2. This reactor was coupled to a sorption/filtration unit with coalactivated carbon. The EC reactor was tested in two different sequences (before and after the sorption/filtration unit). The overall COD reduction varied from 2% ± 0.5% to 77% ± 2.9%, dependingon the sequence and the treated wastewater stream. The best result from efficiency andoperational viewpoints was obtained with the EC reactor placed after the sorption/filtrationcolumn. The increase in efficiency is likely to be due to the removal by sorption in the activatedcarbon of compounds that interfere with EC. Additionally, as desired, the use of EC before thesorption unit extended the activated carbon lifetime.

  • 8.
    Hogland, William
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Manandhar, Dinesh Raj
    Kathmandu University.
    Hansson, Henrik
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Svensson, Henric
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Mårtensson, Lennart
    Kristianstad University.
    Mathiasson, Lennart
    Lund University.
    Environmental Observations of Solid Waste Management at High Altitude in Nepal: Case Study Along Trekking Route in Sagarmatha National Park2010Conference paper (Refereed)
  • 9.
    Svensson, Henric
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Hansson, Henrik
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Hogland, William
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Combined Ozone and Biological Treatment of Oak Wood Leachate2015In: CLEAN - Soil, Air, Water, ISSN 1863-0650, E-ISSN 1863-0669, Vol. 43, no 4, p. 598-604Article in journal (Refereed)
    Abstract [en]

    In the present study, we investigated the possibility of treating oak wood leachate with a combined ozone and biological treatment. Wood leachate is characterized by high amounts of organic carbon and is reported as being toxic to aquatic organisms. Ozone was used as a pre-treatment before using aerobic degradation. The biological treatment was applied for seven days and evaluated using head-space respirometry. Target pollutant in this investigation was polyphenols in combination with more general parameters, such as chemical oxygen demand (COD), total organic carbon (TOC) and colour. A custom made bubble column reactor was used, 1.5 L of wood leachate was exposed to 0-4 g/L of ozone, corresponding to a specific ozone dose between 0.7-7 g/L O-3/g of initial COD. Oak wood leachate was found to be easily degraded by ozone, with >90% of polyphenols degraded. COD was degraded by 73%, TOC by 61% and colour by 97% by ozone. Furthermore, a positive correlation between biodegradation and ozone pre-treatment was found.

  • 10.
    Svensson, Henric
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Hansson, Henrik
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Hogland, William
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Determination of Nutrient Deficiency in Stormwater from the Wood Industry for Biological Treatment2015In: CLEAN - Soil, Air, Water, ISSN 1863-0650, E-ISSN 1863-0669, Vol. 43, no 1, p. 38-43Article in journal (Refereed)
    Abstract [en]

    The efficiency of biological treatment systems in degrading organic matter is affected by both the available nutrients and the efficiency of the microbial organisms that carry out the degradation. This study assesses whether a wetland treatment system treating stormwater from a wood industrial site faced nutrient deficiency or lacked efficient microbes, and whether addressing these possible problems could enhance the degradation of organic matter in the system. The stormwater was a mix of industrial stormwater, irrigation water and leachate from woodchip piles. The industry mainly processes pedunculate oak, which is known to create a leachate high in polyphenols. This water is currently treated in a pilot-scale wetland system and an aerated lagoon. To study whether the treatability could be enhanced by addition of nutrients (phosphorus, nitrogen, micronutrients), headspace respirometry was used. The effect of adding microbes from a paper mill activated sludge system was also evaluated. Our results showed that all nutrient additions had a positive effect on the treatability of the stormwater. In particular, the addition of nitrogen showed a 12% rise in chemical oxygen demand reduction over 336h. However, addition of paper mill activated sludge did not enhance the degradation of organic matter; instead, a toxic effect of the stormwater was shown.

  • 11.
    Trondman, Mats
    et al.
    Linnaeus University, Faculty of Arts and Humanities, Department of Cultural Sciences.
    Andersson, Carolin
    Linnaeus University, Faculty of Social Sciences, Department of Social Studies.
    Barmark, Mimmi
    Lund University.
    Bouakaz, Laid
    Malmö University.
    Hiltunen, Linda
    Linnaeus University, Faculty of Social Sciences, Department of Social Studies.
    Krantz, Sofie
    Linnaeus University, Faculty of Social Sciences, Department of Social Studies.
    Lund, Anna
    Linnaeus University, Faculty of Arts and Humanities, Department of Cultural Sciences.
    Lund, Stefan
    Linnaeus University, Faculty of Social Sciences, Department of Sport Science.
    Petersson, Karina
    Linnaeus University, Faculty of Social Sciences, Department of Social Studies.
    Sarstrand Marekovic, Anna-Maria
    Linnaeus University, Faculty of Social Sciences, Department of Social Studies.
    Nilsson, Henrik
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Taha, Rehan
    Malmö University.
    Voyer, Andrea
    Ett utbildningspolitiskt dilemma: mångkulturell inkorporering och skolprestation2014In: Resultatdialog 2014, Stockholm: Vetenskapsrådet , 2014, 1, p. 218-228Chapter in book (Other (popular science, discussion, etc.))
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf