lnu.sePublications
Change search
Refine search result
1 - 18 of 18
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Golker, Kerstin
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Fundamental Studies on Molecularly Imprinted Materials2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The thesis focuses on fundamental studies aimed at elucidating factors that influence molecularly imprinted polymer (MIP) formation and ligand recognition. To this end, a series of computational techniques, in particular chemometrics and molecular dynamics (MD) in conjunction with polymer synthesis and physical characterization studies have been employed.

     

    In Paper I, the multivariate analysis method principal component analysis (PCA) was used to investigate the role of incubation media on polymer-ligand recognition, and results highlighted the importance of several solvent parameters on recognition. In Paper II, all-component MD simulations were used to examine the role of polymerization mixture stoichiometry on MIP-template recognition. Correlations between nature and extent of template complexation and recognition were observed. The influence of the acidic functionality of the methacrylic acid used in these polymers on polymer-template recognition and morphology was examined in Paper III. PCA was then used in Paper IV to identify relationships between interactions in the pre-polymerization mixture, polymer functionality, recognition and morphology using the polymers described in Paper II and III.

  • 2.
    Golker, Kerstin
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Karlsson, Björn C. G.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Olsson, Gustaf D.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Nicholls, Ian A.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Towards Molecular Dynamics-Based Rational Design of Polymeric Recognition Systems2010Conference paper (Refereed)
    Abstract [en]

    Molecular imprinting is a technique used to design polymeric recognition materials with selectivity for a predetermined structure. The molecular imprinting process generates cavities in the polymer matrix that are complementary in size, shape and functionality to the template-structure. The recognition properties of molecularly imprinted polymers (MIPs) are comparable to those of antibodies and enzymes, which make MIPs utilizable in a wide range of application areas including biomimetic assays and biosensors [1]. Previous studies have shown that the prepolymerization step is central for the establishment of high affinity binding sites in MIPs [2]. However, our understanding of the physical mechanisms underlying MIP formation and template recognition is still limited. With the rapid increase of computational power and the development of suitable software molecular dynamics (MD) simulation methods have become a valuable theoretical tool to aid our understanding of the molecular imprinting process, and even in the development of rational design strategies [2]. Recently the first simulation of a complete prepolymerization mixture was presented [3].

    Here we present 10 ns MD simulations of a series of all-component prepolymerization mixtures. The simulated systems were assembled with different molar ratios using the local anaesthetic bupivacaine as the template, methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the crosslinker, 2,2’-azobis-(2-methylpropionitrile) (AIBN) as the initiator and toluene as the solvent. The simulations were performed using the AMBER (v. 10.0 UCSF, San Francisco, CA) suite of programs (4) and the GAFF [6] force field. Molecular trajectories were evaluated with radial distribution functions and hydrogen bond analysis.

     

     

    References

    1. Alexander, C.; Andersson, H. S.; Andersson, L. I.; Ansell, R. J.; Kirsch, N.; Nicholls, I. A.; O´Mahony, J.; Whitcombe, J., J. Mol. Recognit. (2006), 19, 106-180
    2. Nicholls, I. A.; Andersson, H. S.; Charlton, C.; Henschel, H.; Karlsson, B. C. G.; Karlsson, J. G.; O´Mahony, J.; Rosengren, A. M.; Rosengren, K. J.; Wikman, S. Biosens. Bioelectron. (2009), 25, 543-552
    3. Karlsson, B. C. G.; O´Mahony, J.; Karlsson, J. G.; Bengtsson, H.; Eriksson, L. A.; Nicholls, I. A. J. Am. Chem. Soc. (2009), 131, 13297-13304
    4. Case, D. A.; Cheatham, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. Comput. Chem. (2009), 26, 1668-1688
    5. Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem. (2004), 25, 1157-1174

     

  • 3.
    Golker, Kerstin
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Karlsson, Björn C. G.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Olsson, Gustaf D.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Nicholls, Ian A.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Towards Molecular Dynamics-Based Rational Design of Synthetic Polymer Recognition Systems2010Conference paper (Refereed)
    Abstract [en]

    Molecularly imprinted polymers (MIPs) are polymeric receptors with selectivity for a predetermined structure. The molecular imprinting process generates cavities in a synthetic polymer matrix that are complementary in size, shape and functionality to the template. MIPs exhibit recognition properties analogous to their biological counterparts, such as antibodies, and can be utilized in a wide range of application areas [1]. Nonetheless, the physical mechanisms underlying MIP formation and template recognition are still poorly understood. Molecular dynamics (MD) based computer simulations are a valuable theoretical tool which may be used to aid our understanding of the molecular imprinting process, and even for the development of rational design strategies [2]. Recently the first MD simulation of a complete prepolymerization mixture was presented [3].

    In the present work, MD simulations of a series of all-component prepolymerization mixtures were performed, using the local anaesthetic bupivacaine as the template, methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the crosslinker, 2,2’-azobis-(2-methylpropionitrile) (AIBN) as the initiator and toluene as the solvent. The simulated systems differed in the molar fraction of MAA. Systems were evaluated with radial distribution functions and hydrogen bond analyses. By correlating the results with the rebinding behaviour of a series of synthesized MIPs the importance of the stoichiometry between template, functional monomer and crosslinker was highlighted. The analysis of the MD simulations revealed strong competition for hydrogen bonding between the carbonyl oxygen’s of MAA and EGDMA and the amide proton of bupivacaine. Moreover, the hydrogen bonding contact between EGDMA and bupivacaine remained nearly unaffected by the varied molar fraction MAA in the different systems demonstrating the role of the crosslinker being more important as generally accepted.

     

    References

    [1]             Alexander, C.; Andersson, H. S.; Andersson, L. I.; Ansell, R. J.; Kirsch, N.; Nicholls, I. A.; O´Mahony, J.; Whitcombe, J., J. Mol. Recognit., 19, 106-180 (2006)

    [2]            Nicholls, I. A.; Andersson, H. S.; Charlton, C.; Henschel, H.; Karlsson, B. C. G.; Karlsson, J. G.; O´Mahony, J.; Rosengren, A. M.; Rosengren, K. J.; Wikman, S. Biosens. Bioelectron., 25, 543-552 (2009)

    [3]            Karlsson, B. C. G.; O´Mahony, J.; Karlsson, J. G.; Bengtsson, H.; Eriksson, L. A.; Nicholls, I. A. J. Am. Chem. Soc., 131, 13297-13304 (2009)

  • 4.
    Golker, Kerstin
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Karlsson, Björn C. G.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Olsson, Gustaf D.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Nicholls, Ian A.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Towards the use of molecular dynamics as a predictive tool in the design of molecularly imprinted polymers2010Conference paper (Refereed)
    Abstract [en]

    Through the rapid increase in computational power and the development of suitable software, molecular dynamics (MD) has become a promising tool for use in the development of molecularly imprinted polymers (MIPs).1 MD is a computational method based on Newtonian mechanics, which enables the simultaneous simulation of thousands of discrete molecules, and can be used to establish the states of the molecular species present in MIP-prepolymerization mixtures. As detailed understanding of the molecular basis for formation of high affinity MIP sites is still lacking and the physical mechanism underlying specific recognition is still a matter of debate, the use of MD as a tool to investigate MIP-prepolymerization mixtures is highly motivated.1 Recently the first MD simulation of an all-component prepolymerization mixture was presented, which gave a detailed picture of the underlying monomer-template interactions important for the “molecular memory” in MIPs.2

    Here, we present results obtained from a series of MD simulations representing all-component MIP/REF prepolymerization mixtures assembled with differences in stoichiometries of functional and crosslinking monomer. In these mixtures, the local anaesthetic drug bupivacaine was used as a template, methacrylic acid as the functional monomer, ethylene dimethacrylate as crosslinking monomer, 2,2’-azobis-(2-methylpropionitrile) as the initiator and toluene as the solvent. Bupivacaine complexation in each system was evaluated with radial distribution functions and hydrogen bond analyses. By correlating the results with the rebinding behaviour of a series of synthesized bupivacaine-MIPs, the relationship between the degree of crosslinking and MIP-performance was highlighted.

    [1] Nicholls, I. A.; Andersson, H. S.; Charlton, C.; Henschel, H.; Karlsson, B. C. G.; Karlsson, J. G.; O´Mahony, J.; Rosengren, A. M.; Rosengren, K. J.; Wikman, S. Biosens. Bioelectron., 25, 543-552 (2009)

    [2] Karlsson, B. C. G.; O´Mahony, J.; Karlsson, J. G.; Bengtsson, H.; Eriksson, L. A.; Nicholls, I. A. J. Am. Chem. Soc., 131, 13297-13304 (2009)

  • 5.
    Golker, Kerstin
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Karlsson, Björn C. G.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Olsson, Gustaf D.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Rosengren, Annika M.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Nicholls, Ian A.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Influence of composition and morphology on template recognition in molecularly imprinted polymers2013In: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 46, no 4, p. 1408-1414Article in journal (Refereed)
    Abstract [en]

    A combination of theoretical and experimental studies has provided correlations between molecularly imprinted polymer composition, morphology, and recognition behavior obtained using a series of bupivacaine-imprinted methacrylic acid (MAA)–ethylene glycol dimethacrylate copolymers differing in molar ratios of the respective monomers. Results extracted from analysis of molecular dynamics (MD) trajectory data demonstrated that stability and frequency of interactions between bupivacaine and the monomers in the prepolymerization phase were strongly affected by minor changes in polymer composition, which in turn affected binding site affinity and heterogeneity of the imprinted polymers. Moreover, through the characterization of polymer morphology, we show that higher molar fractions of MAA resulted in polymeric materials with increased pore size, a feature that enhanced the binding capacity of the polymers. Furthermore, the results presented point at the strength of MD for predicting MIP-template binding capacity and affinity.

  • 6.
    Golker, Kerstin
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Karlsson, Björn C. G.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Rosengren, Annika M.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Nicholls, Ian A.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences. Uppsala University.
    A Functional Monomer Is Not Enough: Principal Component Analysis of the Influence of Template Complexation in Pre-Polymerization Mixtures on Imprinted Polymer Recognition and Morphology2014In: International Journal of Molecular Sciences, ISSN 1422-0067, E-ISSN 1422-0067, Vol. 15, no 11, p. 20572-20584Article in journal (Refereed)
    Abstract [en]

    In this report, principal component analysis (PCA) has been used to explore the influence of template complexation in the pre-polymerization phase on template molecularly imprinted polymer (MIP) recognition and polymer morphology. A series of 16 bupivacaine MIPs were studied. The ethylene glycol dimethacrylate (EGDMA)-crosslinked polymers had either methacrylic acid (MAA) or methyl methacrylate (MMA) as the functional monomer, and the stoichiometry between template, functional monomer and crosslinker was varied. The polymers were characterized using radioligand equilibrium binding experiments, gas sorption measurements, swelling studies and data extracted from molecular dynamics (MD) simulations of all-component pre-polymerization mixtures. The molar fraction of the functional monomer in the MAA-polymers contributed to describing both the binding, surface area and pore volume. Interestingly, weak positive correlations between the swelling behavior and the rebinding characteristics of the MAA-MIPs were exposed. Polymers prepared with MMA as a functional monomer and a polymer prepared with only EGDMA were found to share the same characteristics, such as poor rebinding capacities, as well as similar surface area and pore volume, independent of the molar fraction MMA used in synthesis. The use of PCA for interpreting relationships between MD-derived descriptions of events in the pre-polymerization mixture, recognition properties and morphologies of the corresponding polymers illustrates the potential of PCA as a tool for better understanding these complex materials and for their rational design.

  • 7.
    Golker, Kerstin
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Karlsson, Björn C. G.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences. Bioorganic & Biophysical Chemistry Laboratory.
    Wiklander, Jesper G.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Rosengren, Annika M.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Nicholls, Ian A.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences. Uppsala university.
    Hydrogen bond diversity in the pre-polymerization stage contributes to morphology and MIP-template recognition–MAA versus MMA2015In: European Polymer Journal, ISSN 0014-3057, E-ISSN 1873-1945, Vol. 66, p. 558-568Article in journal (Refereed)
    Abstract [en]

    This report demonstrates that the diversity of hydrogen bond interactions present in molecularly imprinted polymer pre-polymerization mixtures, typically associated with binding-site heterogeneity, can also contribute to morphological characteristics that may influence polymer–template recognition. Comparisons have been made between a series of bupivacaine molecularly imprinted methacrylic acid (MAA)–ethylene glycol dimethacrylate (EGDMA) copolymers and a series of analogous methyl methacrylate (MMA)–EGDMA copolymers using comprehensive molecular dynamics studies of the respective pre-polymerization mixtures, template–polymer binding studies and detailed BET surface area and BJH porosity analyses. The role of the carboxylic acid functionality of MAA, and in particular the acidic proton, in generating morphological features conducive to analyte access (slit-like rather than ink bottle-like structures) and recognition is discussed.

  • 8.
    Golker, Kerstin
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Nicholls, Ian A.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences. Uppsala University.
    The effect of crosslinking density on molecularly imprinted polymer morphology and recognition2016In: European Polymer Journal, ISSN 0014-3057, E-ISSN 1873-1945, Vol. 75, p. 423-430Article in journal (Refereed)
    Abstract [en]

    In this report, the crosslinking density of bupivacaine molecularly imprinted methacrylic acid (MAA)-ethylene glycol dimethacrylate (EGDMA) copolymers was investigated through replacement of EGDMA by methyl methacrylate (MMA). The effects were examined using a series of full-scale MD simulations of pre-polymerization mixtures, equilibrium rebinding studies on the corresponding synthesized polymers and morphology characterization through nitrogen sorption measurements. While the extent of hydrogen bonding between the functional monomer MAA and bupivacaine observed in the MD pre-polymerization mixtures was comparable in each of the systems studied, the decrease in degree of crosslinking impacted directly on polymer morphology as observed in BET and BJH studies of surface area and porosity. Further, decreases in the crosslinking density induced reductions in template rebinding capacity as seen from a series of radio-ligand binding studies, demonstrating the importance of crosslinking on the performance of molecularly imprinted MAA-EGDMA copolymers, the polymer system most commonly used in molecular imprinting science and technology. (C) 2016 Elsevier Ltd. All rights reserved.

  • 9.
    Golker, Kerstin
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences. Uppsala university.
    Olsson, Gustaf D.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Nicholls, Ian A.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences. Uppsala University.
    The influence of a methyl substituent on molecularly imprinted polymer morphology and recognition – Acrylic acid versus methacrylic acid2017In: European Polymer Journal, ISSN 0014-3057, E-ISSN 1873-1945, Vol. 92, p. 137-149Article in journal (Refereed)
    Abstract [en]

    In this report, we have investigated factors contributing to the morphology and template recognition of bupivacaine-imprinted copolymers of methacrylic acid (MAA) and ethyleneglycol dimethacrylate (EGDMA). To this end, MAA, the most commonly used functional monomer in non-covalent molecular imprinting protocols, was compared and contrasted with the closely related acrylic acid (AA) in terms of polymer morphologies, recognition characteristics, and molecular level events in the corresponding pre-polymerization mixtures. Two series of analogous bupivacaine-imprinted EGDMA-copolymers containing increasing fractions of either AA or MAA were studied through all-component MD simulations in the pre-polymerization phase, equilibrium binding experiments on corresponding synthesized polymers and morphology characterization by N2-sorption measurements. A higher degree of hydrogen bonding frequency between respective functional monomer and bupivacaine was recorded for the mixtures containing AA compared to those containing MAA. In contrast, results from binding experiments demonstrated higher binding capacities for the polymers prepared with MAA than for those prepared with AA, which is explained by differences in polymer morphology. The surface areas and pore volumes of the AA-polymers were higher than for the MAA-polymers and the overall pore structure in the AA-polymers was ink-bottle shaped while the pores in the MAA-polymers were slit-shaped. We suggest that the methyl substituent of MAA contributes to differences in the reaction kinetics for AA and MAA during polymerization and resulted in different morphologies, in particular pore shape, which affected mass-transfer and consequently the binding qualities of the materials. © 2017 Elsevier Ltd

  • 10.
    Nicholls, Ian A.
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Andersson, Håkan S.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Golker, Kerstin
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Henschel, Henning
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Karlsson, Björn C. G.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Olsson, Gustaf D.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Rosengren, Annika M.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Shoravi, Siamak
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Wiklander, Jesper G.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Wikman, Susanne
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Rational Design of Biomimetic Molecularly Imprinted Materials: Theoretical and Computational Strategies for Guiding Nanoscale Structured Polymer Development2011In: Analytical and Bioanalytical Chemistry, ISSN 1618-2642, E-ISSN 1618-2650, Vol. 400, p. 1771-1786Article, review/survey (Refereed)
    Abstract [en]

    In principle, molecularly imprinted polymer science and technology provides a means for ready access to nano-structured polymeric materials of predetermined selectivity. The versatility of the technique has brought it to the attention of many working with the development of nanomaterials with biological or biomimetic properties for use as therapeutics or in medical devices. Nonetheless, the further evolution of the field necessitates the development of robust predictive tools capable of handling the complexity of molecular imprinting systems. The rapid growth in computer power and software over the past decade has opened new possibilities for simulating aspects of the complex molecular imprinting process. We present here a survey of the current status of the use of in silico-based approaches to aspects of molecular imprinting. Finally, we highlight areas where ongoing and future efforts should yield information critical to our understanding of the underlying mechanisms sufficient to permit the rational design of molecularly imprinted polymers.

  • 11.
    Nicholls, Ian A.
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Andersson, Håkan S.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Golker, Kerstin
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Henschel, Henning
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Karlsson, Björn C. G.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Olsson, Gustaf D.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Rosengren, Annika M.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Shoravi, Siamak
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Wiklander, Jesper G.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Wikman, Susanne
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Rational molecularly imprinted polymer design: theoretical and computational strategies2013In: Molecular Imprinting: Principles and Applications of Micro- and Nanostructured Polymers / [ed] Ye, L, London: Pan Stanford Publishing, 2013, p. 71-104Chapter in book (Refereed)
  • 12.
    Nicholls, Ian A.
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences. Uppsala Univ.
    Chavan, Swapnil
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Golker, Kerstin
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Karlsson, Björn C. G.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences. Bioorganic & Biophysical Chemistry Laboratory.
    Olsson, Gustaf D.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Rosengren, Annika M.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Suriyanarayanan, Subramanian
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Wiklander, Jesper G.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences.
    Theoretical and Computational Strategies for the Study of the Molecular Imprinting Process and Polymer Performance2015In: Molecularly Imprinted Polymers in Biotechnology / [ed] Mattiasson, B. & Ye, L., Berlin: Springer, 2015, p. 25-50Chapter in book (Refereed)
    Abstract [en]

    The development of in silico strategies for the study of the molecular imprinting process and the properties of molecularly imprinted materials has been driven by a growing awareness of the inherent complexity of these systems and even by an increased awareness of the potential of these materials for use in a range of application areas. Here we highlight the development of theoretical and computational strategies that are contributing to an improved understanding of the mechanisms underlying molecularly imprinted material synthesis and performance, and even their rational design.

  • 13.
    Nicholls, Ian A.
    et al.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Karlsson, Björn C. G.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Andersson, Håkan S.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Golker, Kerstin
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Henschel, Henning
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Olsson, Gustaf D.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    O'Mahony, John
    Nilsson Ekdahl, Kristina
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Orozovic, Kanita
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Rosengren, Annika M.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Rosengren-Holmberg, Jenny P.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Shoravi, Siamak
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Wiklander, Jesper G.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Wikman, Susanne
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Biomimetic Polymer Design2009Conference paper (Refereed)
  • 14.
    Rosengren, Annika M.
    et al.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Golker, Kerstin
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Karlsson, Jesper G.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Nicholls, Ian A.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Dielectric constants are not enough: Principal component analysis of the influence of solvent properties on molecularly imprinted polymer–ligand rebinding2009In: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 25, no 3, p. 553-557Article in journal (Refereed)
    Abstract [en]

    The influence of the physical properties of incubation medium on the rebinding of template to bupivacaine molecularly imprinted and non-imprinted methacrylic acid–ethylene dimethacrylate co-polymers has been studied. Principal component analysis (PCA) was employed to identify the factors with the greatest influence on binding. While the dielectric constant (D) made a significant contribution to describing the observed binding, the influence of polarity as reflected in the Snyder polarity index (SPI) was also demonstrated to make a significant contribution. The use of solvents containing hydroxyl functionality in particular was observed to exert unique effects on recognition. The variation in solvent influence on binding at constant D motivates more complex analyses when studying MIP–ligand recognition.

  • 15.
    Rosengren, Annika M.
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Golker, Kerstin
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Wiklander, Jesper G.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Nicholls, Ian A.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Identification of Solvent Properties Influencing Binding to Molecularly Imprinted Polymers2010Conference paper (Refereed)
    Abstract [en]

    In order to examine the physical mechanisms underlying molecularly imprinted polymer1 (MIP)–ligand recognition, polymers with selectivity for the local anaesthetic bupivacaine have been synthesised and their ligand-recognition characteristics examined. As several previous studies have pointed at the complexity of the rebinding characteristics and the dependence on rebinding media,2-4 we used chemometric strategies for the analysis of ligand-MIP binding in various media.5

    In a previous study we presented results from a chemometric analysis showing that rebinding of bupivacaine to the MIP in different solvent mixtures and at different temperatures follow a complicated non-linear relationship.6 The results from that analysis, motivated an investigation into the significance of the solvent physical characteristics (molecular and bulk) on rebinding properties. In this work,7 principal component analysis was employed to identify the factors with the greatest influence on binding. While the dielectric constant made a significant contribution to describing the observed binding, the influence of polarity as reflected in the Snyder polarity index was also demonstrated to also make a significant contribution. The use of solvents containing hydroxyl functionality was observed to exert unique effects on recognition. The variation in solvent influence on binding at constant dielectricity motivates more complex analyses when studying MIP-ligand recognition.

    (1)      Alexander, C.; Andersson, H.S.; Andersson, L.I.; Ansell, R.J.; Kirsch, N.; Nicholls, I.A.; O'Mahony, J.; Whitcombe, M.J. Molecular imprinting science and technology: A survey of the literature for the years up to and including 2003. Journal of Molecular Recognition 2006, 19, 106-180.

    (2)      Andersson, L.I. Efficient sample pre-concentration of bupivacaine from human plasma by solid-phase extraction on molecularly imprinted polymers. Analyst 2000, 125, 1515-1517.

    (3)      Karlsson, J.G.; Andersson, L.I.; Nicholls, I.A. Probing the molecular basis for ligand-selective recognition in molecularly imprinted polymers selective for the local anaesthetic bupivacaine. Analytica Chimica Acta 2001, 435, 57-64.

    (4)      Karlsson, J.G.; Karlsson, B.; Andersson, L.I.; Nicholls, I.A. The roles of template complexation and ligand binding conditions on recognition in bupivacaine molecularly imprinted polymers. Analyst 2004, 129, 456-462.

    (5)      Nicholls, I.A.; Andersson, H.S.; Charlton, C.; Henschel, H.; Karlsson, B.C.G.; Karlsson, J.G.; O’Mahony, J.; Rosengren, A.M.; Rosengren, K.J.; Wikman, S. Theoretical and computational strategies for rational molecularly imprinted polymer design. Biosensors and Bioelectronics 2009, 25, 543-552.

    (6)      Rosengren, A.M.; Karlsson, J.G.; Andersson, P.O.; Nicholls, I.A. Chemometric models of template-molecularly imprinted polymer binding. Analytical Chemistry 2005, 77, 5700-5705.

    (7)      Rosengren, A.M; Golker, K.; Wiklander, J.G.; Nicholls, I.A. Dielectric constants are not enough: Principal component analysis of the influence of solvent properties on molecularly imprinted polymer–ligand rebinding. Biosensors and Bioelectronics 2009, 25, 553-557.

  • 16.
    Rosengren, Annika M.
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Golker, Kerstin
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Wiklander, Jesper G.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Nicholls, Ian A.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Principal component analysis of the influence of solvent properties on molecularly imprinted polymer–ligand rebinding2010Conference paper (Refereed)
    Abstract [en]

    Molecular imprinting is a technique for creating polymeric recognition materials with predetermined ligand selectivities.1 A molecularly imprinted polymer (MIP) with selectivity for the local anaesthetic bupivacaine has been synthesised in order to examine the physical mechanisms underlying MIP–ligand recognition characteristics. As rebinding characteristics has shown to be complex, we use chemometric strategies for the analysis of ligand-MIP binding in various media.2-4 The use of chemometrics simplify the selection of optimal experimental parameters as well as the extraction of significant information generated from multivariate data analysis.5

    Previously we have presented results from a chemometric analysis pointing at a complex non-linear relationship when studying binding of bupivacaine to the MIP in different solvent mixtures and at different temperatures.6 The results motivated an investigation into the significance of the solvent physical characteristics (molecular and bulk) on rebinding properties. In this work, principal component analysis was employed to identify the factors with the greatest influence on binding. While the dielectric constant made a significant contribution to describing the observed binding, the influence of polarity as reflected in the Snyder polarity index was also demonstrated to make a significant contribution. The use of solvents containing hydroxyl functionality was observed to exert unique effects on recognition. The variation in solvent influence on binding at constant dielectricity motivates more complex analyses when studying MIP-ligand recognition. Collectively, the results provided general insights concerning the complex interplay between the mechanisms controlling ligand recognition in MIPs.

     

    References

    1. Alexander, C.; Andersson, H.S.; Andersson, L.I.; Ansell, R.J.; Kirsch, N.; Nicholls, I.A.; O’Mahony, J.; Whitcombe, M.J. Journal of Molecular Recognition 2006, 19, 106-180.
    2. Andersson, L.I. Analyst 2000, 125, 1515-1517.
    3. Karlsson, J.G.; Andersson, L.I.; Nicholls, I.A. Analytica Chimica Acta 2001, 435, 57-64.
    4. Karlsson, J.G.; Karlsson, B.; Andersson, L.I.; Nicholls, I.A. Analyst 2004, 129, 456-462.
    5. Nicholls, I.A.; Andersson, H.S.; Charlton, C.; Henschel, H.; Karlsson, B.C.G.; Karlsson, J.G.; O’Mahony, J.; Rosengren, A.M.; Rosengren, K.J.; Wikman, S. Biosensors and Bioelectronics 2009, 25, 543-552.
    6. Rosengren, A.M.; Karlsson, J.G.; Andersson, P.O.; Nicholls, I.A. Analytical Chemistry 2005, 77, 5700-5705.
  • 17.
    Rosengren, Annika M.
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Golker, Kerstin
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Wiklander, Jesper G.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Nicholls, Ian A.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Principal component analysis of the influence of solvent properties on molecularly imprinted polymer–ligand rebinding2010Conference paper (Refereed)
    Abstract [en]

    A molecularly imprinted polymer (MIP) is a polymeric material with selective recognition for an analyte.1 In order to examine the physical mechanisms underlying MIP–ligand recognition, polymers with selectivity for the local anaesthetic bupivacaine have been synthesised and their ligand-recognition characteristics examined. As several previous studies have pointed at the complexity of the rebinding characteristics and the dependence on rebinding media,2-4 we used chemometric strategies for the analysis of ligand-MIP binding in various media.5

    In a previous study we presented results from a chemometric analysis showing that rebinding of bupivacaine to the MIP in different solvent mixtures and at different temperatures follow a complicated non-linear relationship.6 The results from that analysis, motivated an investigation into the significance of the solvent physical characteristics (molecular and bulk) on rebinding properties. In this work, principal component analysis was employed to identify the factors with the greatest influence on binding. While the dielectric constant made a significant contribution to describing the observed binding, the influence of polarity as reflected in the Snyder polarity index was also demonstrated to also make a significant contribution. The use of solvents containing hydroxyl functionality was observed to exert unique effects on recognition. The variation in solvent influence on binding at constant dielectricity motivates more complex analyses when studying MIP-ligand recognition.

     

    References

    1. Alexander, C.; Andersson, H.S.; Andersson, L.I.; Ansell, R.J.; Kirsch, N.; Nicholls, I.A.; O’Mahony, J.; Whitcombe, M.J. Journal of Molecular Recognition 2006, 19, 106-180.
    2. Andersson, L.I. Analyst 2000, 125, 1515-1517.
    3. Karlsson, J.G.; Andersson, L.I.; Nicholls, I.A. Analytica Chimica Acta 2001, 435, 57-64.
    4. Karlsson, J.G.; Karlsson, B.; Andersson, L.I.; Nicholls, I.A. Analyst 2004, 129, 456-462.
    5. Nicholls, I.A.; Andersson, H.S.; Charlton, C.; Henschel, H.; Karlsson, B.C.G.; Karlsson, J.G.; O’Mahony, J.; Rosengren, A.M.; Rosengren, K.J.; Wikman, S. Biosensors and Bioelectronics 2009, 25, 543-552.
    6. Rosengren, A.M.; Karlsson, J.G.; Andersson, P.O.; Nicholls, I.A. Analytical Chemistry 2005, 77, 5700-5705.
  • 18.
    Torres, Nuria Albet
    et al.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Bloemink, MJ
    Barman, T
    Candau, R
    Frölander, Kerstin
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Geeves, MA
    Golker, Kerstin
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Herrmann, C
    Lionne, C
    Piperio, C
    Schmitz, S
    Veigel, C
    Månsson, Alf
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Drug effect unveils inter-head cooperativity and strain-dependent ADP release in fast skeletal actomyosin2009In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 284, no 34, p. 22926-22937Article in journal (Refereed)
    Abstract [en]

    Amrinone is a bipyridine compound with characteristic effects on the force-velocity relationship of fast skeletal muscle, including a reduction in the maximum shortening velocity and increased maximum isometric force. Here we performed experiments to elucidate the molecular mechanisms for these effects, with the additional aim to gain insight into the molecular mechanisms underlying the force-velocity relationship. In vitro motility assays established that amrinone reduces the sliding velocity of heavy meromyosin-propelled actin filaments by 30% at different ionic strengths of the assay solution. Stopped-flow studies of myofibrils, heavy meromyosin and myosin subfragment 1, showed that the effects on sliding speed were not because of a reduced rate of ATP-induced actomyosin dissociation because the rate of this process was increased by amrinone. Moreover, optical tweezers studies could not detect any amrinone-induced changes in the working stroke length. In contrast, the ADP affinity of acto-heavy meromyosin was increased about 2-fold by 1 mM amrinone. Similar effects were not observed for acto-subfragment 1. Together with the other findings, this suggests that the amrinone-induced reduction in sliding velocity is attributed to inhibition of a strain-dependent ADP release step. Modeling results show that such an effect may account for the amrinone-induced changes of the force-velocity relationship. The data emphasize the importance of the rate of a strain-dependent ADP release step in influencing the maximum sliding velocity in fast skeletal muscle. The data also lead us to discuss the possible importance of cooperative interactions between the two myosin heads in muscle contraction.

1 - 18 of 18
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf