lnu.sePublications
Change search
Refine search result
12 1 - 50 of 79
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Dodoo, Ambrose
    et al.
    Linnaeus University, Faculty of Technology, Department of Building and Energy Technology.
    Gustavsson, Leif
    Linnaeus University, Faculty of Technology, Department of Building and Energy Technology.
    Peñaloza, Diego
    SP.
    Sathre, Roger
    Linnaeus University, Faculty of Technology, Department of Building and Energy Technology.
    Case studies: Wälluden as case study for three wooden structure systems, Chapter 8.22013In: Wood in carbon efficient construction: Tools, methods and applications / [ed] Kuittinen M., Ludvig, A. and Weiss, G, Finland: Hämeen Kirjapaino Oy , 2013, p. 114-123Chapter in book (Other academic)
  • 2.
    Dodoo, Ambrose
    et al.
    Linnaeus University, Faculty of Technology, Department of Building and Energy Technology.
    Gustavsson, Leif
    Linnaeus University, Faculty of Technology, Department of Building and Energy Technology.
    Sathre, Roger
    Linnaeus University, Faculty of Technology, Department of Building and Energy Technology.
    Background: What is life cycle assessment and carbon footprint analysis? Chapter 2.22013In: Wood in carbon efficient construction: Tools, methods and applications / [ed] Kuittinen M., Ludvig, A. and Weiss, G., Finland: Hämeen Kirjapaino Oy , 2013, p. 15-15Chapter in book (Refereed)
  • 3.
    Dodoo, Ambrose
    et al.
    Mid Sweden University.
    Gustavsson, Leif
    Linnaeus University, Faculty of Science and Engineering, School of Engineering. Mid Sweden University.
    Sathre, Roger
    Mid Sweden University.
    Building energy-efficiency standards in a life cycle primary energy perspective2011In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 43, no 7, p. 1589-1597Article in journal (Refereed)
    Abstract [en]

    In this study we analyze the life cycle primary energy use of a wood-frame apartment building designed to meet the current Swedish building code, the Swedish building code of 1994 or the passive house standard, and heated with district heat or electric resistance heating. The analysis includes the primary energy use during the production, operation and end-of-life phases. We find that an electric heated building built to the current building code has greater life cycle primary energy use relative to a district heated building, although the standard for electric heating is more stringent. Also, the primary energy use for an electric heated building constructed to meet the passive house standard is substantially higher than for a district heated building built to the Swedish building code of 1994. The primary energy for material production constitutes 5% of the primary energy for production and space heating and ventilation of an electric heated building built to meet the 1994 code. The share of production energy increases as the energy-efficiency standard of the building improves and when efficient energy supply is used, and reaches 30% for a district heated passive house. This study shows the significance of a life cycle primary energy perspective and the choice of heating system in reducing energy use in the built environment.

  • 4.
    Dodoo, Ambrose
    et al.
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Gustavsson, Leif
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Sathre, Roger
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Carbon implications of end-of-life management of building materials2009In: Resources, Conservation and Recycling, ISSN 0921-3449, E-ISSN 1879-0658, Vol. 53, no 5, p. 276-286Article in journal (Refereed)
    Abstract [en]

    In this study we investigate the effects of post-use material management on the life cycle carbon balance of buildings, and compare the carbon balance of a concrete-frame building to that of a wood-frame building. The demolished concrete is either landfilled, or is crushed into aggregate followed by exposure to air for periods ranging from 4 months to 30 years to increase carbonation uptake of CO2. The demolished wood is assumed to be used for energy to replace fossil fuels. We calculate the carbon flows associated with fossil fuel used for material production, calcination emission from cement manufacture, carbonation of concrete during and after its service life, substitution of fossil fuels by recovered wood residues, recycling of steel, and fossil fuel used for post-use material management. We find that carbonation of crushed concrete results in significant uptake of CO2. However, the CO2 emission from fossil fuel used to crush the concrete significantly reduces the carbon benefits obtained from the increased carbonation due to crushing. Stockpiling crushed concrete for a longer time will increase the carbonation uptake, but may not be practical due to space constraints. Overall, the effect of carbonation of post-use concrete is small. The post-use energy recovery of wood and the recycling of reinforcing steel both give higher carbon benefit than the post-use carbonation. We conclude that carbonation of concrete in the post-use phase does not affect the validity of earlier studies reporting that wood-frame buildings have substantially lower carbon emission than concrete-frame buildings.

  • 5.
    Dodoo, Ambrose
    et al.
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Gustavsson, Leif
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Sathre, Roger
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Climate impacts of wood vs. non-wood buildings2016Report (Other academic)
    Abstract [en]

    This report documents the findings of a project commissioned by the SwedishAssociation of Local Authorities and Regions on energy and climateimplications of building structural-frame materials from a life cycle perspective.The report is compiled by researchers within the Sustainable Built EnvironmentGroup (SBER) at Linnaeus University, Växjö, Sweden, and it addresses theterms of reference of the project agreement, including review of existingliterature and reports on energy and climate implications of wood-frame andnon-wood-frame building systems.The report’s primarily focus is: the effect of material choice on different lifecycle stages of a building; the significance of building frame material in relationto the total primary energy use and climate impact of a building; keymethodological issues linked to life cycle analysis of buildings; and theimportance of system perspective in analysis of a building’s climate impacts.

  • 6.
    Dodoo, Ambrose
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Engineering. Mittuniversitetet, Östersund.
    Gustavsson, Leif
    Linnaeus University, Faculty of Science and Engineering, School of Engineering.
    Sathre, Roger
    Linnaeus University, Faculty of Science and Engineering, School of Engineering.
    Effect of thermal mass on life cycle primary energy balances of a concrete- and a wood-frame building2012In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 92, p. 462-472Article in journal (Refereed)
    Abstract [en]

    In this study we analyze the effect of thermal mass on space heating energy use and life cycle primary energy balances of a concrete- and a wood-frame building. The analysis includes primary energy use during the production, operation, and end-of-life phases. Based on hour-by-hour dynamic modeling of heat flows in building mass configurations we calculate the energy saving benefits of thermal mass during the operation phase of the buildings. Our results indicate that the energy savings due to thermal mass is small and varies with the climatic location and energy efficiency levels of the buildings. A concrete-frame building has slightly lower space heating demand than a wood-frame alternative, due to the higher thermal mass of concrete-based materials. Still, a wood-frame building has a lower life cycle primary energy balance than a concrete-frame alternative. This is due primarily to the lower production primary energy use and greater bioenergy recovery benefits of the wood-frame buildings. These advantages outweigh the energy saving benefits of thermal mass. We conclude that the influence of thermal mass on space heating energy use for buildings located in Nordic climate is small and that wood-frame buildings with cogeneration based district heating would be an effective means of reducing primary energy use in the built environment.

  • 7.
    Dodoo, Ambrose
    et al.
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Gustavsson, Leif
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Sathre, Roger
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Energy implications of end-of-life options for building materials2008In: First International Conference on Building Energy and Environment, Proceedings Vols 1-3, Dalian, China: Dalian University Technology Press , 2008, p. 2025-2032Conference paper (Refereed)
    Abstract [en]

    The energy flows associated with the materials comprising a building can be a significant part of the total energy used in a building's life cycle. Buildings have finite life spans, and the materials from demolished buildings can be either a burden that must be disposed, or a resource that can be used. In this paper we analyse the end-of-life energy impacts of concrete, steel and wood. End-of-life options considered include reuse; recycling; downcycling; energy recovery; and disposal in landfill. We follow the life cycles of the building materials from the acquisition of natural resources through to the end of the product's life cycle. We identify possibilities and constraints for integrating more effective end-of-life material processing options into existing industrial systems.

  • 8.
    Dodoo, Ambrose
    et al.
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Gustavsson, Leif
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Sathre, Roger
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Impacts of end-use energy efficiency measures on life cycle primary energy use in an existing Swedish multi-story apartment building2011In: World Renewable Energy Congress 2011, Linköping, Sweden, May 8-11, Linköping University Electronic Press, 2011Conference paper (Refereed)
  • 9.
    Dodoo, Ambrose
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Engineering.
    Gustavsson, Leif
    Linnaeus University, Faculty of Science and Engineering, School of Engineering.
    Sathre, Roger
    Linnaeus University, Faculty of Science and Engineering, School of Engineering.
    Life cycle primary energy analysis of conventional and passive house buildings2011In: Proceeding SB11, World Sustainable Building Conference, Helsinki, Finland, October 18-21, 2011Conference paper (Refereed)
  • 10.
    Dodoo, Ambrose
    et al.
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Gustavsson, Leif
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Sathre, Roger
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Life cycle primary energy implication of retrofitting a wood-framed apartment building to passive house standard2010In: Resources, Conservation and Recycling, ISSN 0921-3449, E-ISSN 1879-0658, Vol. 54, no 12, p. 1152-1160Article in journal (Refereed)
    Abstract [en]

    Here we analyze the life cycle primary energy implication of retrofitting a four-storey wood-frame apartment building to the energy use of a passive house. The initial building has an annual final energy use of 110 kWh/m(2) for space and tap water heating. We model improved thermal envelope insulation, ventilation heat recovery, and efficient hot water taps. We follow the building life cycle to analyze the primary energy reduction achieved by the retrofitting, considering different energy supply systems. Significantly greater life cycle primary energy reduction is achieved when an electric resistance heated building is retrofitted than when a district heated building is retrofitted. The primary energy use for material production increases when the operating energy is reduced but this increase is more than offset by greater primary energy reduction during the operation phase of the building, resulting in significant life cycle primary energy savings. Still, the type of heat supply system has greater impact on primary energy use than the final heat reduction measures.

  • 11.
    Dodoo, Ambrose
    et al.
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Gustavsson, Leif
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Sathre, Roger
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Life cycle primary energy perspective on retrofitting an existing building to passive house standard2010In: SB10, Sustainable Community, Espoo, Finland, September 22-24, 2010, 2010Conference paper (Refereed)
  • 12.
    Dodoo, Ambrose
    et al.
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Gustavsson, Leif
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Sathre, Roger
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Life cycle primary energy use of an apartment building designed to the current Swedish building code or passive house standard2010In: Passivhus Norden. Aalborg, Denmark, October 7- 8, 2010, 2010Conference paper (Refereed)
  • 13.
    Dodoo, Ambrose
    et al.
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Gustavsson, Leif
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Sathre, Roger
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Lifecycle carbon implications of conventional and low-energy multi-storey timber building systems2014In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 82, p. 194-210Article in journal (Refereed)
    Abstract [en]

    A consequential-based lifecycle approach is used here to explore the carbon implications of conventional and low-energy versions of three timber multi-storey building systems. The building systems are made of massive wood using cross laminated timber (CLT) elements; beam-and-column using glulam and laminated veneer lumber (LVL) elements; and prefabricated modules using light-frame volume elements. The analysis encompasses the entire resource chains during the lifecycle of the buildings, and tracks the flows of carbon from fossil energy, industrial process reactions, changes in carbon stocks in materials, and potential avoided fossil emissions from substitution of fossil energy by woody residues. The results show that the low-energy version of the CLT building gives the lowest lifecycle carbon emission while the conventional version of the beam-and-column building gives the highest lifecycle emission. Compared to the conventional designs, the low-energy designs reduce the total carbon emissions (excluding from tap water heating and household and facility electricity) by 9%, 8% and 9% for the CLT, beam-and-column and modular systems, respectively, for a 50-year lifespan located in Växjö. The relative significance of the construction materials to the fossil carbon emission varies for the different energy-efficiency levels of the buildings, with insulation dominating for the low-energy houses and plasterboard dominating for the conventional houses.

  • 14.
    Dodoo, Ambrose
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Engineering.
    Gustavsson, Leif
    Linnaeus University, Faculty of Science and Engineering, School of Engineering.
    Sathre, Roger
    Linnaeus University, Faculty of Science and Engineering, School of Engineering.
    Lifecycle primary energy analysis of conventional and passive houses2012In: International Journal of Sustainable Building Technology and Urban Development, ISSN 2093-761X, E-ISSN 2093-7628, Vol. 3, no 2, p. 105-111Article in journal (Refereed)
    Abstract [en]

    In this study we analyse the primary energy implications of thermal envelope designs and construction systems, for a 4-storey apartment building, including the full lifecycle phases and the entire energy chains. We maintain the architectural design of the reference building, and alter the thermal properties of the envelope components and include heat recovery of ventilation air to achieve buildings with thermal properties similar to three existing passive houses in Sweden. We also vary the building frame material from the reference wood case to reinforced concrete, and vary the heat supply system between district heating and electric resistance heating. We follow the lifecycle of the buildings and analyse and compare their lifecycle primary energy use, considering the production, operation and end-of-life energy uses. The results show that the lifecycle primary energy use of a passive house building is substantially lower when it is heated with district heating instead of electricity. A passive house with district heating uses 42–45% less lifecycle primary energy than the same house with electric heating. Lifecycle primary energy use is 2–4% less when a passive house is constructed with a wood frame instead of a concrete frame. This study shows that material choice becomes increasingly important as buildings are made to the passive house standard and as efficient heat supply systems are used.

  • 15.
    Dodoo, Ambrose
    et al.
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Gustavsson, Leif
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Sathre, Roger
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Lifecycle primary energy analysis of low-energy timber building systems for multi-story residential buildings2014In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 81, p. 84-97Article in journal (Refereed)
    Abstract [en]

    A system-wide lifecycle approach is used here to explore the primary energy implications of three timber building systems for a multi-storey building designed to a high energy-efficiency level. The three building systems are: cross laminated timber, beam -and-column, and modular prefabricated systems. The analysis considers the energy and material flows in the production, use and post-use lifecycle stages of the buildings. The effects of insulation material options and the contribution of different building elements to the production energy for the buildings are explored. The results show that external and internal walls account for the biggest share of the production energy for all building systems and its contribution is comparable for the different systems. In contrast, there is significant variation in the production primary energy for the roof-ceilings and intermediate floor-ceilings for the different building systems. Overall, the cross laminated timber building system gives the lowest lifecycle primary energy balance, as this building is insulated with stone wool and has better airtightness in contrast to the other building systems which are insulated with glass wool and have lower airtightness performance. With improved airtightness and insulation substitution, the total primary energy use for the beam-and-column and modular building systems can be reduced by 7% and 9%, respectively.

  • 16.
    Dodoo, Ambrose
    et al.
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Gustavsson, Leif
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Sathre, Roger
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Modeling Carbon Footprint of Wood-Based Products and Buildings2015In: The Carbon Footprint Handbook / [ed] Subramanian Senthilkannan Muthu, London: CRC Press, 2015, p. 143-162Chapter in book (Refereed)
  • 17.
    Dodoo, Ambrose
    et al.
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Gustavsson, Leif
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Sathre, Roger
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Potential for reducing primary energy use in an existing Swedish apartment building: Passivhus Norden. Göteborg, Sweden, April 27-292009Conference paper (Other academic)
  • 18.
    Dodoo, Ambrose
    et al.
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Gustavsson, Leif
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Sathre, Roger
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Primary energy implication of mechanical ventilation with heat recovery in residential buildings.2010In: ACEEE Summer study on energy efficiency in buildings. Pacific Grove, California, USA, August 15-20, 2010Conference paper (Refereed)
  • 19.
    Dodoo, Ambrose
    et al.
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Gustavsson, Leif
    Linnaeus University, Faculty of Science and Engineering, School of Engineering. Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Sathre, Roger
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Primary energy implications of ventilation heat recovery in residential buildings2011In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 43, no 7, p. 1566-1572Article in journal (Refereed)
    Abstract [en]

    In this study, we analyze the impact of ventilation heat recovery (VHR) on the operation primary energy use in residential buildings. We calculate the operation primary energy use of a case-study apartment building built to conventional and passive house standard, both with and without VHR, and using different end-use heating systems including electric resistance heating, bedrock heat pump and district heating based on combined heat and power (CHP) production. VHR increases the electrical energy used for ventilation and reduces the heat energy used for space heating. Significantly greater primary energy savings is achieved when VHR is used in resistance heated buildings than in district heated buildings. For district heated buildings the primary energy savings are small. VHR systems can give substantial final energy reduction, but the primary energy benefit depends strongly on the type of heat supply system, and also on the amount of electricity used for VHR and the airtightness of buildings. This study shows the importance of considering the interactions between heat supply systems and VHR systems to reduce primary energy use in buildings.

  • 20.
    Dodoo, Ambrose
    et al.
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Gustavsson, Leif
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Sathre, Roger
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Recycling of lumber2014In: Handbook of recycling: state-of-the-art for practitioners, analysts, and scientists / [ed] Ernst Worrell and Markus A. Reuter, Waltham, MA: Elsevier, 2014, 1, p. 151-163Chapter in book (Refereed)
    Abstract [en]

    Wood from sustainably managed forests can play important roles both as material and as fuel in a transition to a low-carbon society. Wood is widely used as an energy source and as a physical and structural material in diverse applications, including furniture and joinery, pulp and paper, and construction material. There is large potential to improve resource efficiency and thereby reduce greenhouse gas (GHG) emissions through efficient management of post-use wood materials. This chapter explores post-use management of wood products from resource efficiency and climate perspectives. Primary energy and GHG balances are important metrics to understand the resource efficiency of climate change mitigation strategies involving post-use wood products. Primary energy use largely determines natural resource efficiency and steers the environmental impacts of material recovery and production. This chapter describes the mechanisms through which post-use management of recovered wood materials can affect primary energy use and GHG impacts of wood products. To further understand the implications of different post-use management options for wood products, we then explore several quantitative case-studies.

  • 21.
    Dodoo, Ambrose
    et al.
    Linnaeus University, Faculty of Technology, Department of Building and Energy Technology.
    Gustavsson, Leif
    Linnaeus University, Faculty of Technology, Department of Building and Energy Technology.
    Sathre, Roger
    Linnaeus University, Faculty of Technology, Department of Building and Energy Technology.
    The role of wood in carbon efficient construction. Primary energy and greenhouse gas balances over the life cycle of different wood building systems: Swedish case-study building. €CO2 Work Package 12013Report (Other academic)
  • 22.
    Dodoo, Ambrose
    et al.
    Linnaeus University, Faculty of Technology, Department of Building and Energy Technology.
    Sathre, Roger
    Linnaeus University, Faculty of Technology, Department of Building and Energy Technology.
    Building level   : full carbon footprint analysis, Chapter 4.5.22013In: Wood in carbon efficient construction: Tools, methods and applications / [ed] Kuittinen M., Ludvig, A. and Weiss, G., Finland: Hämeen Kirjapaino Oy , 2013, p. 47-51Chapter in book (Other academic)
  • 23. Dodoo, Ambrose
    et al.
    Sathre, Roger
    Life-cycle primary energy implication of the new Swedish Building Code.: ECEEE Summer study. La Colle Sur Loupe, Côte d’Azur, France, June 1-6.2009Conference paper (Other academic)
  • 24. Eriksson, Erik
    et al.
    Gillespie, Andrew
    Gustavsson, Leif
    Mittuniversitetet, Institutionen för teknik, fysik och matematik.
    Langvall, Ola
    Olsson, Mats
    Sathre, Roger
    Mittuniversitetet, Institutionen för teknik, fysik och matematik.
    Stendahl, Johan
    Integrated carbon analysis of forest management practices and wood substitution2007In: Canadian Journal of Forest Research, ISSN 0045-5067, E-ISSN 1208-6037, Vol. 37, no 3, p. 671-681Article in journal (Refereed)
    Abstract [en]

    The complex fluxes between standing and harvested carbon stocks, and the linkage between harvested biomassand fossil fuel substitution, call for a holistic, system-wide analysis in a life-cycle perspective to evaluate the impacts offorest management and forest product use on carbon balances. We have analysed the net carbon emission under alternativeforest management strategies and product uses, considering the carbon fluxes and stocks associated with tree biomass,soils, and forest products. Simulations were made using three Norway spruce (Picea abies (L.) Karst.) forest managementregimes (traditional, intensive management, and intensive fertilization), three slash management practices (no removal, removal,and removal with stumps), two forest product uses (construction material and biofuel), and two reference fossilfuels (coal and natural gas). The greatest reduction of net carbon emission occurred when the forest was fertilized, slashand stumps were harvested, wood was used as construction material, and the reference fossil fuel was coal. The lowest reductionoccurred with a traditional forest management, forest residues retained on site, and harvested biomass was used asbiofuel to replace natural gas. Product use had the greatest impact on net carbon emission, whereas forest management regime,reference fossil fuel, and forest residue usage as biofuel were less significant.

  • 25.
    Eriksson, Ljusk Ola
    et al.
    Department of Forest Resource Management, SLU.
    Gustavsson, Leif
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Hänninen, Riitta
    METLA .
    Kallio, Maarit
    METLA .
    Lyhykäinen, Henna
    University of Helsinki.
    Pingoud, Kim
    VTT Technical Research Centre of Finland.
    Pohjola, Johanna
    METLA .
    Sathre, Roger
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Solberg, Birger
    UMB .
    Svanaes, Jarle
    Norsk Treteknisk Institutt.
    Valsta, Lauri
    University of Helsinki.
    Climate change mitigation through increased wood use in the European construction sector - towards an integrated modelling framework2012In: European Journal of Forest Research, ISSN 1612-4669, E-ISSN 1612-4677, Vol. 131, no 1, p. 131-144Article in journal (Refereed)
    Abstract [en]

    Using wood as a building material affects the carbon balance through several mechanisms. This paper describes a modelling approach that integrates a wood product substitution model, a global partial equilibrium model, a regional forest model and a stand-level model. Three different scenarios were compared with a business-as-usual scenario over a 23-year period (2008-2030). Two scenarios assumed an additional one million apartment flats per year will be built of wood instead of non-wood materials by 2030. These scenarios had little effect on markets and forest management and reduced annual carbon emissions by 0.2-0.5% of the total 1990 European GHG emissions. However, the scenarios are associated with high specific CO2 emission reductions per unit of wood used. The third scenario, an extreme assumption that all European countries will consume 1-m3 sawn wood per capita by 2030, had large effects on carbon emission, volumes and trade flows. The price changes of this scenario, however, also affected forest management in ways that greatly deviated from the partial equilibrium model projections. Our results suggest that increased wood construction will have a minor impact on forest management and forest carbon stocks. To analyse larger perturbations on the demand side, a market equilibrium model seems crucial. However, for that analytical system to work properly, the market and forest regional models must be better synchronized than here, in particular regarding assumptions on timber supply behaviour. Also, bioenergy as a commodity in market and forest models needs to be considered to study new market developments; those modules are currently missing

  • 26.
    Eriksson, Ljusk Ola
    et al.
    Department of Forest Resource Management, SLU.
    Gustavsson, Leif
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Hänninen, Riitta
    METLA .
    Kallio, Maarit
    METLA .
    Lyhykäinen, Henna
    University of Helsinki.
    Pingoud, Kim
    VTT Technical Research Centre of Finland.
    Pohjola, Johanna
    METLA .
    Sathre, Roger
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Solberg, Birger
    UMB .
    Svanaes, Jarle
    Norsk Treteknisk Institutt.
    Valsta, Lauri
    University of Helsinki.
    Climate implications of increased wood use in the construction sector - towards an integrated modeling framework2009Report (Other academic)
  • 27.
    Gustavsson, Leif
    et al.
    Linnaeus University, Faculty of Technology, Department of Building and Energy Technology.
    Dodoo, Ambrose
    Linnaeus University, Faculty of Technology, Department of Building and Energy Technology.
    Mötzl, Hildegard
    Sathre, Roger
    Linnaeus University, Faculty of Technology, Department of Building and Energy Technology.
    Fundamentals: greenhouse gas and primary energy balances over a building life cycle2013In: Wood in carbon efficient construction: Tools, methods and applications / [ed] Kuittinen M., Ludvig, A. and Weiss, G., Finland: Hämeen Kirjapaino Oy , 2013, p. 24-31Chapter in book (Refereed)
  • 28.
    Gustavsson, Leif
    et al.
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Dodoo, Ambrose
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Sathre, Roger
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Impact of ventilation heat recovery on primary energy use of apartment buildings built to conventional and passive house standard2011In: World Renewable Energy Congress 2011, Linköping, Sweden, May 8-11, Linköping University Electronic Press, 2011Conference paper (Refereed)
  • 29.
    Gustavsson, Leif
    et al.
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Dodoo, Ambrose
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Sathre, Roger
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Life cycle primary energy use in buildings of high energy standards2010In: ACEEE Summer study on energy efficiency in buildings. Pacific Grove, California, USA, August 15-20, 2010Conference paper (Refereed)
  • 30.
    Gustavsson, Leif
    et al.
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Eriksson, Lisa
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Sathre, Roger
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Costs and CO2 benefits of recovering, refining and transporting logging residues for fossil fuel replacement2011In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 88, no 1, p. 192-197Article in journal (Refereed)
    Abstract [en]

    There are many possible systems for recovering, refining, and transporting logging residues for use as fuel. Here we analyse costs, primary energy and CO2 benefits of various systems for using logging residues locally, nationally or internationally. The recovery systems we consider are a bundle system and a traditional chip system in a Nordic context. We also consider various transport modes and distances, refining the residues into pellets, and replacing different fossil fuels. Compressing of bundles entails costs, but the cost of chipping is greatly reduced if chipping is done on a large scale, providing an overall cost-effective system. The bundle system entails greater primary energy use, but its lower dry-matter losses mean that more biomass per hectare can be extracted from the harvest site. Thus, the potential replacement of fossil fuels per hectare of harvest area is greater with the bundle system than with the chip system. The fuel-cycle reduction of CO2 emissions per harvest area when logging residues replace fossil fuels depends more on the type of fossil fuel replaced, the logging residues recovery system used and the refining of the residues, than on whether the residues are transported to local, national or international end-users. The mode and distance of the transport system has a minor impact on the CO2 emission balance.

  • 31.
    Gustavsson, Leif
    et al.
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Haus, Sylvia
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Lundblad, Mattias
    Swedish University of Agricultural Sciences.
    Lundström, Anders
    Swedish University of Agricultural Sciences.
    Ortiz, Carina A.
    Swedish University of Agricultural Sciences.
    Sathre, Roger
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Truong, Nguyen Le
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Wikberg, Per-Erik
    Swedish University of Agricultural Sciences.
    Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels2017In: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 67, p. 612-624Article in journal (Refereed)
    Abstract [en]

    We estimate the climate effects of directing forest management in Sweden towards increased carbon storage in forests with more land set-aside for protection, or towards increased forest production for the substitution of carbon-intensive materials and fossil fuels, relative to a reference case of current forest management. We develop various scenarios of forest management and biomass use to estimate the carbon balances of the forest systems, including ecological and technological components, and their impacts on the climate in terms of radiative forcing. The scenario with increased set-aside area and the current level of forest residue harvest resulted in lower cumulative carbon emissions compared to the reference case for the first 90 years, but then showed higher emissions as reduced forest harvest led to higher carbon emissions from energy and material systems. For the reference case of current forest management, increased harvest of forest residues gave increased climate benefits. The most climatically beneficial alternative, expressed as reduced cumulative radiative forcing, in both the short and long terms is a strategy aimed at high forest production, high residue recovery rate, and high efficiency utilization of harvested biomass. Active forest management with high harvest levels and efficient forest product utilization will provide more climate benefit, compared to reducing harvest and storing more carbon in the forest.

  • 32.
    Gustavsson, Leif
    et al.
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Haus, Sylvia
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Ortiz, Carina A.
    Swedish University of Agricultural Sciences.
    Sathre, Roger
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Truong, Nguyen Le
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Climate effects of bioenergy from forest residues in comparison to fossil energy2015In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 138, p. 36-50Article in journal (Refereed)
    Abstract [en]

    Forest residues can be left at the harvest site to gradually decompose, or can be collected for energy purposes. This study analyzes the primary energy and climate impacts of bioenergy systems where forest residues are collected and used for electricity, heat and transportation, compared to fossil-based energy systems where fossil fuels provide the same services while forest residues are left on site to decompose. Time profiles are elaborated of primary energy use and carbon dioxide emissions from various energy applications fulfilled by bioenergy or fossil energy systems. Different biological decay functions are considered based on process-based modeling and inventory data across various climate zones. For all scenarios, the changes in cumulative radiative forcing (CRF) are calculated over a 300-year period, to evaluate the short- and long-term contributions of forest residue to climate change mitigation. A life cycle perspective along the full energy chains is used to evaluate the overall effectiveness of each system. The results show largest primary energy and climate benefits when forest residues are collected and used efficiently for energy services. Using biomass to substitute fossil coal provides greater climate change mitigation benefits than substituting oil or fossil gas. Some bioenergy substitutions result in positive CRF, i.e. increased global warming, during an initial period. This occurs for relatively inefficient bioenergy conversion pathways to substitute less carbon intensive fossil fuels, e.g. biomotor fuel used to replace diesel. More beneficial bioenergy substitutions, such as efficiently replacing coal, result immediately in reduced CRF. Biomass decay rates and transportation distance have less influence on climate benefits.

  • 33.
    Gustavsson, Leif
    et al.
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Haus, Sylvia
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Ortiz, Carina
    Swedish University of Agricultural Sciences.
    Sathre, Roger
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Truong, Nguyen Le
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Dynamic impacts of forest residues on primary energy use and greenhouse gas emissions2014In: The 9th Conference on Sustainable Development of Energy, Water and Environment Systems - SDEWES. September 20 - 27, 2014, Venice-Istanbul, 2014Conference paper (Refereed)
  • 34.
    Gustavsson, Leif
    et al.
    Mittuniversitetet, Institutionen för teknik, fysik och matematik.
    Holmberg, Jonas
    Mittuniversitetet, Institutionen för teknik, fysik och matematik.
    Dornburg, Veronica
    Mittuniversitetet, Institutionen för teknik, fysik och matematik.
    Sathre, Roger
    Mittuniversitetet, Institutionen för teknik, fysik och matematik.
    Eggers, Thies
    Mittuniversitetet, Institutionen för teknik, fysik och matematik.
    Mahapatra, Krushna
    Mittuniversitetet, Institutionen för teknik, fysik och matematik.
    Marland, Gregg
    Mittuniversitetet, Institutionen för teknik, fysik och matematik.
    Using biomass for climate change mitigation and oil use reduction2007In: Energy Policy, ISSN 0301-4215, E-ISSN 1873-6777, Vol. 35, no 11, p. 5671-5691Article in journal (Refereed)
    Abstract [en]

    In this paper, we examine how an increased use of biomass could efficiently meet Swedish energy policy goals of reducing carbon dioxide (CO2) emissions and oil use. In particular, we examine the trade-offs inherent when biomass use is intended to pursue multiple objectives. We set up four scenarios in which up to 400 PJ/year of additional biomass is prioritised to reduce CO2 emissions, reduce oil use, simultaneously reduce both CO2 emission and oil use, or to produce ethanol to replace gasoline. Technologies analysed for using the biomass include the production of electricity, heat, and transport fuels, and also as construction materials and other products. We find that optimising biomass use for a single objective (either CO2 emission reduction or oil use reduction) results in high fulfilment of that single objective (17.4 Tg C/year and 350 PJ oil/year, respectively), at a monetary cost of 130–330 million €/year, but with low fulfilment of the other objective. A careful selection of biomass uses for combined benefits results in reductions of 12.6 Tg C/year and 230 PJ oil/year (72% and 67%, respectively, of the reductions achieved in the scenarios with single objectives), with a monetary benefit of 45 million €/year. Prioritising for ethanol production gives the lowest CO2 emissions reduction, intermediate oil use reduction, and the highest monetary cost.

  • 35.
    Gustavsson, Leif
    et al.
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Joelsson, Anna
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Sathre, Roger
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Life cycle primary energy use and carbon emission of an eight-storey wood-framed apartment building2010In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 42, no 2, p. 230-242Article in journal (Refereed)
    Abstract [en]

    In this study the life cycle primary energy use and carbon dioxide (CO2) emission of an eight-storey wood-framed apartment building are analyzed. All life cycle phases are included, including acquisition and processing of materials, on-site construction, building operation, demolition and materials disposal. The calculated primary energy use includes the entire energy system chains, and carbon flows are tracked including fossil fuel emissions, process emissions, carbon stocks in building materials, and avoided fossil emissions due to biofuel substitution. The results show that building operation uses the largest share of life cycle energy use, becoming increasingly dominant as the life span of the building increases. The type of heating system strongly influences the primary energy use and CO2 emission; a biomass-based system with cogeneration of district heat and electricity achieves low primary energy use and very low CO2 emissions. Using biomass residues from the wood products chain to substitute for fossil fuels significantly reduces net CO2 emission. Excluding household tap water and electricity, a negative life cycle net CO2 emission can be achieved due to the wood-based construction materials and biomass-based energy supply system. This study shows the importance of using a life cycle perspective when evaluating primary energy and climatic impacts of buildings.

  • 36.
    Gustavsson, Leif
    et al.
    Mittuniversitetet, Institutionen för teknik, fysik och matematik.
    Pingoud, Kim
    Sathre, Roger
    Mittuniversitetet, Institutionen för teknik, fysik och matematik.
    Carbon dioxide balance of wood substitution: comparing concrete- and wood-framed buildings2006In: Mitigation and Adaptation Strategies for Global Change, ISSN 1381-2386, E-ISSN 1573-1596, Vol. 11, no 3, p. 667-691Article in journal (Refereed)
    Abstract [en]

    In this study a method is suggested to compare the net carbon dioxide (CO2) emission from the construction of concrete- and wood-framed buildings. The method is then applied to two buildings in Sweden and Finland constructed with wood frames, compared with functionally equivalent buildings constructed with concrete frames. Carbon accounting includes: emissions due to fossil fuel use in the production of building materials; the replacement of fossil fuels by biomass residues from logging, wood processing, construction and demolition; carbon stock changes in forests and buildings; and cement process reactions. The results show that wood-framed construction requires less energy, and emits less CO2 to the atmosphere, than concrete-framed construction. The lifecycle emission difference between the wood- and concrete-framed buildings ranges from 30 to 130 kg C per m2 of floor area. Hence, a net reduction of CO2 emission can be obtained by increasing the proportion of wood-based building materials, relative to concrete materials. The benefits would be greatest if the biomass residues resulting from the production of the wood building materials were fully used in energy supply systems. The carbon mitigation efficiency, expressed in terms of biomass used per unit of reduced carbon emission, is considerably better if the wood is used to replace concrete building material than if the wood is used directly as biofuel.

  • 37.
    Gustavsson, Leif
    et al.
    Mittuniversitetet, Institutionen för teknik, fysik och matematik.
    Sathre, Roger
    Mittuniversitetet, Institutionen för teknik, fysik och matematik.
    Embodied energy and CO2 emission of wood- and concrete-framed buildings in Sweden2004In: 2nd World Biomass Conference, Rome, Italy, 2004Conference paper (Other academic)
  • 38.
    Gustavsson, Leif
    et al.
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Sathre, Roger
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Energy and CO2 analysis of wood substitution in construction2011In: Climatic Change, ISSN 0165-0009, E-ISSN 1573-1480, Vol. 105, no 1-2, p. 129-153Article in journal (Refereed)
    Abstract [en]

    Comparative analysis of the energy and carbon balances of wood vs. non-wood products is a complex issue. In this paper we discuss the definition of an appropriate functional unit and the establishment of effective system boundaries in terms of activity, time and space, with an emphasis on the comparison of buildings. The functional unit can be defined at the level of building component, complete building, or services provided by the built environment. Energy use or carbon emissions per unit of mass or volume of material is inadequate as a functional unit because equal masses or volumes of different materials do not fulfil the same function. Activity-based system boundaries include life cycle processes such as material production, product operation, and post-use material management. If the products compared are functionally equivalent, such that the impacts occurring during the operation phase are equal, we suggest that this phase may be dropped from the analysis allowing a focus on material flows. The use of wood co-products as biofuel can be analytically treated through system expansion, and compared to an alternative of providing the same energy service with fossil fuels. The assumed production of electricity used for material processing is another important energy-related issue, and we suggest that using marginal production data is more appropriate than average production. Temporal system boundaries include such aspects of the wood life cycle as the dynamics of forest growth including regeneration and saturation, the availability of residue biofuels at different times, and the duration of carbon storage in products. The establishment of spatial boundaries can be problematic, because using wood-based materials instead of non-wood materials requires more land area to capture solar energy and accumulate biomass. We discuss several possible approaches to meet this challenge, including the intensification of land use to increase the time rate of biomass production. Finally, we discuss issues related to scaling up an analysis of wood substitution from the micro-level to the macro-level of national, regional or global.

  • 39.
    Gustavsson, Leif
    et al.
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Sathre, Roger
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Intensive, integrated biomass-based material and energy systems: Swedish experience2008In: First International Conference on Building Energy and Environment, Proceedings Vols 1-3, Dalian University Technology Press , 2008, p. 1299-1306Conference paper (Refereed)
    Abstract [en]

    Sustainable development of the built environment requires the production of increased quantities of construction materials and energy services, produced within the constraints of natural systems. This paper presents recent findings from Sweden on the intensive use of renewable forest resources within integrated material and energy systems. Production of materials for wood-framed construction uses less primary energy than for comparable reinforced concrete construction. Multiple wood-based products can be co-produced from the forest biomass, increasing the efficiency of raw material use. Biomass by-products from the entire wood product chain, including forestry, wood processing, construction and demolition, can be recovered for use as biofuel. The biofuel energy available over the life cycle of a wood-framed building is greater than the primary energy used to produce the materials. Increasing forest management intensity gives greater energy returns on management energy inputs. Intensive production of forest biomass is maintained by closing nutrient cycles through application of wood ash and nitrogen fertiliser.

  • 40.
    Gustavsson, Leif
    et al.
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Sathre, Roger
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Towards a sustainable building sector: Life cycle primary energy use and carbon emission of a wood-framed apartment building with biomass-based energy supply2010In: Joint Session of the UNECE Timber Committee (TC) and Society of Wood Science and Technology (SWST) 53rd International Convention. Geneva, Switzerland, 11-15 October, 2010Conference paper (Other academic)
  • 41.
    Gustavsson, Leif
    et al.
    Mittuniversitetet, Institutionen för teknik, fysik och matematik.
    Sathre, Roger
    Mittuniversitetet, Institutionen för teknik, fysik och matematik.
    Variability in energy and carbon dioxide balances of wood and concrete building materials2006In: Building and Environment, ISSN 0360-1323, E-ISSN 1873-684X, Vol. 41, no 7, p. 940-951Article in journal (Refereed)
    Abstract [en]

    A variety of factors affect the energy and CO2 balances of building materials over their lifecycle. Previous studies have shown that the use of wood for construction generally results in lower energy use and CO2 emission than does the use of concrete. To determine the uncertainties of this generality, we studied the changes in energy and CO2 balances caused by variation of key parameters in the manufacture and use of the materials comprising a wood- and a concrete-framed building. Parameters considered were clinker production efficiency, blending of cement, crushing of aggregate, recycling of steel, lumber drying efficiency, material transportation distance, carbon intensity of fossil fuel, recovery of logging, sawmill, construction and demolition residues for biofuel, and growth and exploitation of surplus forest not needed for wood material production. We found the materials of the wood-framed building had lower energy and CO2 balances than those of the concrete-framed building in all cases but one. Recovery of demolition and wood processing residues for use in place of fossil fuels contributed most significantly to the lower energy and CO2 balances of wood-framed building materials. We conclude that the use of wood building material instead of concrete, coupled with greater integration of wood by-products into energy systems, would be an effective means of reducing fossil fuel use and net CO2 emission to the atmosphere.

  • 42.
    Gustavsson, Leif
    et al.
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Sathre, Roger
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Dodoo, Ambrose
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Climate change effects over the lifecycle of a building - Report on methodological issues in determining the climate change effects over the life cycle of a building: Final report for Boverket2015Report (Other academic)
  • 43.
    Gustavsson, Leif
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Engineering. Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Truong, Nguyen Le
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Dodoo, Ambrose
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Sathre, Roger
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Effects of environmental taxations on district heat production structures2011In: World Renewable Energy Congress 2011, Linköping, Sweden, May 8-11 / [ed] Bahram Moshfegh, Linköping University Electronic Press, 2011, p. 3420-3427Conference paper (Refereed)
  • 44.
    Haus, Sylvia
    et al.
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Gustavsson, Leif
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Sathre, Roger
    Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
    Climate mitigation comparison of woody biomass systems with the inclusion of land-use in the reference fossil system2014In: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 65, p. 136-144Article in journal (Refereed)
    Abstract [en]

    While issues of land-use have been considered in many direct analyses of biomass systems, little attention has heretofore been paid to land-use in reference fossil systems. Here we address this limitation by comparing forest biomass systems to reference fossil systems with explicit consideration of land-use in both systems. We estimate and compare the time profiles of greenhouse gas (GHG) emission and cumulative radiative forcing (CRF) of woody biomass systems and reference fossil systems. A life cycle perspective is used that includes all significant elements of both systems, including GHG emissions along the full material and energy chains. We consider the growth dynamics of forests under different management regimes, as well as energy and material substitution effects of harvested biomass. We determine the annual net emissions of CO2, N2O and CH4 for each system over a 240-year period, and then calculate time profiles of cRF as a proxy measurement of climate change impact. The results show greatest potential for climate change mitigation when intensive forest management is applied in the woody biomass system. This methodological framework provides a tool to help determine optimal strategies for managing forests so as to minimize climate change impacts. The inclusion of land-use in the reference system improves the accuracy of quantitative projections of climate benefits of biomass-based systems. (c) 2014 Elsevier Ltd. All rights reserved.

  • 45.
    Haus, Sylvia
    et al.
    Linnaeus University, Faculty of Technology, Department of Building and Energy Technology.
    Gustavsson, Leif
    Linnaeus University, Faculty of Technology, Department of Building and Energy Technology.
    Sathre, Roger
    Linnaeus University, Faculty of Technology, Department of Building and Energy Technology.
    Greenhouse Gas Emission Comparison of Woody Biomass Systems with the Inclusion of Land-use in the Reference Fossil System2013In: 21st European Biomass Conference & Exhibition, Copenhagen, June 3-7, 2013, ETA-Florence Renewable Energies, , 2013, p. 1794-1799Conference paper (Refereed)
    Abstract [en]

    While issues of land-use have been considered in many analyses of biomass systems, little attention has heretofore been paid to land-use in reference fossil systems. In this study we address this limitation by comparing forest biomass systems to reference fossil systems with explicit consideration of land-use in both systems. We estimate and compare the time profiles of greenhouse gas (GHG) emission and cumulative radiative forcing (CRF) of woody biomass systems and reference fossil systems. A life cycle perspective is used that includes all elements of both systems and all GHG emissions along the full material and energy chains. We consider the growth dynamics of forests under different management regimes, as well as energy and material substitution effects. We determine the annual net emissions of CO2, N2O and CH4 for each system over a 240-year period. We then calculate time profiles of CRF as a proxy for climate change impacts. The results show greatest CRF reduction when fertilized forest management is applied in the woody biomass system. The results show the relevance of including land use options in both the biomass and the fossil system to accurately determine the climate impacts and benefits of forest management and product use.

  • 46. Lippke, B.
    et al.
    Oneil, E.
    Harrison, R.
    Skog, K.
    Gustavsson, Leif
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Sathre, Roger
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Life cycle impacts of forest management and wood utilization on carbon mitigation: knowns and unknowns2011In: Carbon Management, ISSN 1758-3004, Vol. 2, no 3, p. 303-333Article in journal (Refereed)
    Abstract [en]

    This review on research on life cycle carbon accounting examines the complexities in accounting for carbon emissions given the many different ways that wood is used. Recent objectives to increase the use of renewable fuels have raised policy questions, with respect to the sustainability of managing our forests as well as the impacts of how best to use wood from our forests. There has been general support for the benefits of sustainably managing forests for carbon mitigation as expressed by the Intergovernmental Panel on Climate Change in 2007. However, there are many integrated carbon pools involved, which have led to conflicting implications for best practices and policy. In particular, sustainable management of forests for products produces substantially different impacts than a focus on a single stand or on specific carbon pools with each contributing to different policy implications. In this article, we review many recent research findings on carbon impacts across all stages of processing from cradle-to-grave, based on life cycle accounting, which is necessary to understand the carbon interactions across many different carbon pools. The focus is on where findings are robust and where uncertainties may be large enough to question key assumptions that impact carbon in the forest and its many uses. Many opportunities for reducing carbon emissions are identified along with unintended consequences of proposed policies.

  • 47.
    Lundmark, Tomas
    et al.
    Swedish University of Agricultural Sciences.
    Bergh, Johan
    Swedish University of Agricultural Sciences.
    Hofer, Peter
    GEO Partner AG, Switzerland.
    Lundström, Anders
    Swedish University of Agricultural Sciences.
    Nordin, Annika
    Swedish University of Agricultural Sciences.
    Poudel, Bishnu Chandra
    Mid Sweden University.
    Sathre, Roger
    Lawrence Berkeley National Laboratory, USA.
    Taverna, Ruedi
    GEO Partner AG, Switzerland.
    Werner, Frank
    Werner Environment & Development, Switzerland.
    Potential roles of Swedish forestry in the context of climate change mitigation2014In: Forests, ISSN 1999-4907, E-ISSN 1999-4907, Vol. 5, no 4, p. 557-578Article in journal (Refereed)
    Abstract [en]

     In Sweden, where forests cover more than 60% of the land area, silviculture and the use of forest products by industry and society play crucial roles in the national carbon balance. A scientific challenge is to understand how different forest management and wood use strategies can best contribute to climate change mitigation benefits. This study uses a set of models to analyze the effects of different forest management and wood use strategies in Sweden on carbon dioxide emissions and removals through 2105. If the present Swedish forest use strategy is continued, the long-term climate change mitigation benefit will correspond to more than 60 million tons of avoided or reduced emissions of carbon dioxide annually, compared to a scenario with similar consumption patterns in society but where non-renewable products are used instead of forest-based products. On average about 470 kg of carbon dioxide emissions are avoided for each cubic meter of biomass harvested, after accounting for carbon stock changes, substitution effects and all emissions related to forest management and industrial processes. Due to Sweden’s large export share of forest-based products, the climate change mitigation effect of Swedish forestry is larger abroad than within the country. The study also shows that silvicultural methods to increase forest biomass production can further reduce net carbon dioxide emissions by an additional 40 million tons of per year. Forestry’s contribution to climate change mitigation could be significantly increased if management of the boreal forest were oriented towards increased biomass production and if more wood were used to substitute fossil fuels and energy-intensive materials.

  • 48.
    Pingoud, Kim
    et al.
    VTT Technical Research Centre of Finland.
    Cowie, Annette
    Bird, Neil
    Gustavsson, Leif
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Rüter, Sebastian
    Sathre, Roger
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Soimakallio, Sampo
    Türk, Andreas
    Woess-Gallasch, Susanne
    Bioenergy: Counting on Incentives: (In Letters)2010In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 327, no 5970, p. 1199-1200Article in journal (Other academic)
  • 49.
    Poudel, Bishnu Chandra
    et al.
    Mid Sweden University.
    Bergh, Johan
    Swedish University of Agricultural Sciences.
    Lundmark, Tomas
    Swedish University of Agricultural Sciences.
    Nordin, Annika
    Swedish University of Agricultural Sciences.
    Sathre, Roger
    Lawrence Berkeley National Laboratory, USA.
    Modelling forest management in Sweden: trade-offs between carbon benefit and biodiversity conservation.2013Conference paper (Refereed)
  • 50.
    Poudel, Bishnu Chandra
    et al.
    Mid Sweden University.
    Bergh, Johan
    Swedish University of Agricultural Sciences (SLU).
    Sathre, Roger
    Mid Sweden University.
    Forest biomass production and their potential use to mitigate climate change2012In: Tackling climate change: the contribution of forest scientific knowledge, Tours, France: INRA Editions, 2012Conference paper (Refereed)
    Abstract [en]

    This paper examines how forest products can be utilized to contribute tackling climate change. An integrated model-based system analysis approach is applied to estimate forest biomass production and substitution effects of climate change and forest management goals. We estimate net primary production with the use of process based model BIOMASS incorporating climate change effects according to IPCC SRES B2 scenario. BIOMASS considers the processes of radiation absorption, photosynthesis, phenology, allocation of photosynthesis among plant organs, litter-fall, and the stand water balance. The resulting output of net primary production from BIOMASS is input into the empirical model HUGIN to calculate tree growth functions in five scenarios representing different forest management goals. These growth functions determine the total growth and the potential harvestable forest biomass. The harvested products in terms of whole tree biomass and stem wood biomass are then assumed to substitute construction materials and fossil fuels, and the substitution effect is calculated in terms of net CO2 emission reduction. We use the Q-model to estimate soil carbon changes in the forest because of litter fall and soil decomposition processes in different scenarios. The results show that the climate change effect and intensive forestry practice can increase forest production and product harvest by up to 75% and 69% respectively compared to the production in the year 2010. If the harvested biomass is used to substitute fossil fuel and building construction materials a total net carbon emission reduction up to 249 Tg carbon is possible. The carbon stock in standing biomass, forest soils, and wood products all increases. The carbon stock changes are less significant than compared to the substitution benefits. This study can conclude that the climate change effect and improved forest management practices may increase forest biomass significantly, thus will give increased opportunity to reduce carbon emission significantly to contribute to the climate change mitigation.

12 1 - 50 of 79
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf