lnu.sePublikasjoner
Endre søk
Begrens søket
1 - 19 of 19
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Alneberg, Johannes
    et al.
    KTH Royal instute of technology, Sweden.
    Bennke, Christin
    Leibniz Inst Balt Sea Res, Germany.
    Beier, Sara
    Leibniz Inst Balt Sea Res, Germany;Sorbonne Univ, France.
    Bunse, Carina
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Carl von Ossietzky Univ Oldenburg, Germany;Alfred Wegener Institut, Germany.
    Quince, Christopher
    Univ Warwick, UK.
    Ininbergs, Karolina
    Stockholm University, Sweden;Karolinska Institutet, Sweden.
    Riemann, Lasse
    Univ Copenhagen, Denmark.
    Ekman, Martin
    Stockholm University, Sweden.
    Juergens, Klaus
    Leibniz Inst Balt Sea Res, Germany.
    Labrenz, Matthias
    Leibniz Inst Balt Sea Res, Germany.
    Pinhassi, Jarone
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Linnéuniversitetet, Kunskapsmiljöer Linné, Vatten.
    Andersson, Anders F.
    KTH Royal instute of technology, Sweden.
    Ecosystem-wide metagenomic binning enables prediction of ecological niches from genomes2020Inngår i: Communications Biology, E-ISSN 2399-3642, Vol. 3, nr 1, s. 1-10, artikkel-id 119Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Alneberg et al. conduct metagenomics binning of water samples collected over major environmental gradients in the Baltic Sea. They use machine-learning to predict the placement of genome clusters along niche gradients based on the content of functional genes. The genome encodes the metabolic and functional capabilities of an organism and should be a major determinant of its ecological niche. Yet, it is unknown if the niche can be predicted directly from the genome. Here, we conduct metagenomic binning on 123 water samples spanning major environmental gradients of the Baltic Sea. The resulting 1961 metagenome-assembled genomes represent 352 species-level clusters that correspond to 1/3 of the metagenome sequences of the prokaryotic size-fraction. By using machine-learning, the placement of a genome cluster along various niche gradients (salinity level, depth, size-fraction) could be predicted based solely on its functional genes. The same approach predicted the genomes' placement in a virtual niche-space that captures the highest variation in distribution patterns. The predictions generally outperformed those inferred from phylogenetic information. Our study demonstrates a strong link between genome and ecological niche and provides a conceptual framework for predictive ecology based on genomic data.

  • 2.
    Bunse, Carina
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Bacterioplankton community associated with the Baltic Sea spring bloom2015Independent thesis Advanced level (degree of Master (Two Years)), 30 poäng / 45 hpOppgave
    Abstract [en]

    Marine microbial communities are highly dynamic, respond to environmental drivers and change on spatial and temporal scales. In the Baltic Sea, recent surveys show that the salinity gradient structures bacterioplankton community composition. Yet, these surveys were conducted during summer when environmental conditions were relatively stable. The spring bloom is initiated by near-zero temperatures, depletes inorganic nutrients and is the major source of organic matter in the system. In this study, bacterioplankton dynamics, phytoplankton and environmental parameters were monitored during the transition of the spring bloom on transects across the Baltic Proper, from Finland to Germany. Using next generation amplicon sequencing of the 16S rRNA gene, we studied the bacterial community composition during the general transition of the plankton community from new to regenerated production. We show that on short temporal scales, the microbial community composition varies across large spatial scales. Gammaproteobacteria and Betaproteobacteria were highly abundant in the open Baltic Proper, and were strongly correlated to phosphate availability during early stages of the spring bloom. During the mature bloom stage, the bacterioplankton communities was highly similar along the entire transect, dominated by Bacteroidetes, Actinobacteria and Alphaproteobacteria. Compared to other surveys we found that salinity is not solely driving the Baltic Sea bacterioplankton community composition during spring bloom conditions. Thus, changes in nutrient availability, timing and transition of the bloom can act as selective forces, structuring microbial communities.

  • 3.
    Bunse, Carina
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Bacterioplankton in the light of seasonality and environmental drivers2017Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Bacterioplankton are keystone organisms in marine ecosystems. They are important for element cycles, by transforming dissolved organic carbon and other nutrients. Bacterioplankton community composition and productivity rates change in surface waters over spatial and temporal scales. Yet, many underlying biological processes determining when, why and how bacterioplankton react to changes in environmental conditions are poorly understood. Here, I used experiments with model bacteria and natural assemblages as well as field studies to determine molecular, physiological and ecological responses allowing marine bacteria to adapt to their environment.

    Experiments with the flavobacterium Dokdonia sp. MED134 aimed to determine how the metabolism of bacteria is influenced by light and different organic matter. Under light exposure, Dokdonia sp. MED134 expressed proteorhodopsin and adjusted its metabolism to use resources more efficiently when growing with lower-quality organic matter. Similar expression patterns were found in oceanic datasets, implying a global importance of photoheterotrophic metabolisms for the ecology of bacterioplankton.

    Further, I investigated how the composition and physiology of bacterial assemblages are affected by elevated CO2 concentrations and inorganic nutrients. In a large-scale experiment, bacterioplankton could keep productivity and community structure unaltered by adapting the gene expression under CO2 stress. To maintain pH homeostasis, bacteria induced higher expression of genes related to respiration, membrane transport and light acquisition under low-nutrient conditions. Under high-nutrient conditions with phytoplankton blooms, such regulatory mechanisms were not necessary. These findings indicate that open ocean systems are more vulnerable to ocean acidification than coastal waters.

    Lastly, I used field studies to resolve how bacterioplankton is influenced by environmental changes, and how this leads to seasonal succession of marine bacteria. Using high frequency sampling over three years, we uncovered notable variability both between and within years in several biological features that rapidly changed over short time scales. These included potential phytoplankton-bacteria linkages, substrate uptake rates, and shifts in bacterial community structure. Thus, high resolution time series can provide important insights into the mechanisms controlling microbial communities.

    Overall, this thesis highlights the advantages of combining molecular and traditional oceanographic methodological approaches to study ecosystems at high resolution for improving our understanding of the physiology and ecology of microbial communities and, ultimately, how they influence biogeochemical processes.

    Fulltekst (pdf)
    Doctoral Thesis (Comprehensive Summary)
    Download (jpg)
    Front Page
    Download (pdf)
    Errata
  • 4.
    Bunse, Carina
    et al.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Bertos-Fortis, Mireia
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Sassenhagen, Ingrid
    Lund University.
    Sildever, Sirje
    Tallinn University of Technology, Estonia.
    Sjöqvist, Conny
    Marine Research Centre, Finland;Åbo Akademi University, Finland.
    Godhe, Anna
    University of Gothenburg.
    Gross, Susanna
    University of Gothenburg.
    Kremp, Anke
    Marine Research Centre, Finland.
    Lips, Inga
    Tallinn University of Technology, Estonia.
    Lundholm, Nina
    University of Copenhagen, Denmark.
    Rengefors, Karin
    Lund University.
    Sefbom, Josefin
    University of Gothenburg.
    Pinhassi, Jarone
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Legrand, Catherine
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Spatio-Temporal Interdependence of Bacteria and Phytoplankton during a Baltic Sea Spring Bloom2016Inngår i: Frontiers in Microbiology, E-ISSN 1664-302X, Vol. 7, artikkel-id 517Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In temperate systems, phytoplankton spring blooms deplete inorganic nutrients and are major sources of organic matter for the microbial loop. In response to phytoplankton exudates and environmental factors, heterotrophic microbial communities are highly dynamic and change their abundance and composition both on spatial and temporal scales. Yet, most of our understanding about these processes comes from laboratory model organism studies, mesocosm experiments or single temporal transects. Spatial -temporal studies examining interactions of phytoplankton blooms and bacterioplankton community composition and function, though being highly informative, are scarce. In this study, pelagic microbial community dynamics (bacteria and phytoplankton) and environmental variables were monitored during a spring bloom across the Baltic Proper (two cruises between North Germany to Gulf of Finland). To test to what extent bacterioplankton community composition relates to the spring bloom, we used next generation amplicon sequencing of the 16S rRNA gene, phytoplankton diversity analysis based on microscopy counts and population genotyping of the dominating diatom Skeletonema rnarinoi. Several phytoplankton bloom related and environmental variables were identified to influence bacterial community composition. Members of Bacteroidetes and Alphaproteobacteria dominated the bacterial community composition but the bacterial groups showed no apparent correlation with direct bloom related variables. The less abundant bacterial phyla Actinobacteria, Planctomycetes, and Verrucomicrobia, on the other hand, were strongly associated with phytoplankton biomass, diatom:dinoflagellate ratio, and colored dissolved organic matter (cDOM). Many bacterial operational taxonomic units (OTUs) showed high niche specificities. For example, particular Bacteroidetes OTUs were associated with two distinct genetic clusters of S. marinoi. Our study revealed the complexity of interactions of bacterial taxa with inter- and intraspecific genetic variation in phytoplankton. Overall, our findings imply that biotic and abiotic factors during spring bloom influence bacterial community dynamics in a hierarchical manner.

  • 5.
    Bunse, Carina
    et al.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Carl von Ossietzky Univ Oldenburg, Germany.
    Israelsson, Stina
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Baltar, Federico
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Univ Vienna, Austria.
    Bertos-Fortis, Mireia
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Fridolfsson, Emil
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Legrand, Catherine
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Lindehoff, Elin
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Lindh, Markus V.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Swedish Meteorological and Hydrological Institute, Sweden.
    Martínez-García, Sandra
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Univ Vigo, Spain.
    Pinhassi, Jarone
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    High Frequency Multi-Year Variability in Baltic Sea Microbial Plankton Stocks and Activities2019Inngår i: Frontiers in Microbiology, E-ISSN 1664-302X, Vol. 9, artikkel-id 3296Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Marine bacterioplankton are essential in global nutrient cycling and organic matter turnover. Time-series analyses, often at monthly sampling frequencies, have established the paramount role of abiotic and biotic variables in structuring bacterioplankton communities and productivities. However, fine-scale seasonal microbial activities, and underlying biological principles, are not fully understood. We report results from four consecutive years of high-frequency time-series sampling in the Baltic Proper. Pronounced temporal dynamics in most investigated microbial variables were observed, including bacterial heterotrophic production, plankton biomass, extracellular enzyme activities, substrate uptake rate constants of glucose, pyruvate, acetate, amino acids, and leucine, as well as nutrient limitation bioassays. Spring blooms consisting of diatoms and dinoflagellates were followed by elevated bacterial heterotrophic production and abundances. During summer, bacterial productivity estimates increased even further, coinciding with an initial cyanobacterial bloom in early July. However, bacterial abundances only increased following a second cyanobacterial bloom, peaking in August. Uptake rate constants for the different measured carbon compounds varied seasonally and inter-annually and were highly correlated to bacterial productivity estimates, temperature, and cyanobacterial abundances. Further, we detected nutrient limitation in response to environmental conditions in a multitude of microbial variables, such as elevated productivities in nutrient bioassays, changes in enzymatic activities, or substrate preferences. Variations among biotic variables often occurred on time scales of days to a few weeks, yet often spanning several sampling occasions. Such dynamics might not have been captured by sampling at monthly intervals, as compared to more predictable transitions in abiotic variables such as temperature or nutrient concentrations. Our study indicates that high resolution analyses of microbial biomass and productivity parameters can help out in the development of biogeochemical and food web models disentangling the microbial black box.

  • 6.
    Bunse, Carina
    et al.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Lundin, Daniel
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Karlsson, Christofer M. G.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Akram, Neelam
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Vila-Costa, Maria
    Centre d’Estudis Avançats de Blanes-CSIC, Spain.
    Palovaara, Joakim
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Svensson, Lovisa
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Holmfeldt, Karin
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    González, José M.
    University of La Laguna, Spain.
    Calvo, Eva
    Institut de Ciències del Mar—CSIC, Spain.
    Pelejero, Carles
    Institut de Ciències del Mar—CSIC, Spain.
    Marrasé, Cèlia
    Institut de Ciències del Mar—CSIC, Spain.
    Dopson, Mark
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Gasol, Josep
    Institut de Ciències del Mar—CSIC, Spain.
    Pinhassi, Jarone
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Response of marine bacterioplankton pH homeostasis gene expression to elevated CO22016Inngår i: Nature Climate Change, ISSN 1758-678X, E-ISSN 1758-6798, Vol. 6, nr 5, s. 483-487Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Human-induced ocean acidification impacts marine life. Marine bacteria are major drivers of biogeochemical nutrient cycles and energy fluxes1; hence, understanding their performance under projected climate change scenarios is crucial for assessing ecosystem functioning. Whereas genetic and physiological responses of phytoplankton to ocean acidification are being disentangled2, 3, 4, corresponding functional responses of bacterioplankton to pH reduction from elevated CO2 are essentially unknown. Here we show, from metatranscriptome analyses of a phytoplankton bloom mesocosm experiment, that marine bacteria responded to lowered pH by enhancing the expression of genes encoding proton pumps, such as respiration complexes, proteorhodopsin and membrane transporters. Moreover, taxonomic transcript analysis showed that distinct bacterial groups expressed different pH homeostasis genes in response to elevated CO2. These responses were substantial for numerous pH homeostasis genes under low-chlorophyll conditions (chlorophyll a <2.5 μg l−1); however, the changes in gene expression under high-chlorophyll conditions (chlorophyll a >20 μg l−1) were low. Given that proton expulsion through pH homeostasis mechanisms is energetically costly, these findings suggest that bacterioplankton adaptation to ocean acidification could have long-term effects on the economy of ocean ecosystems.

  • 7.
    Bunse, Carina
    et al.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Lundin, Daniel
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Lindh, Markus V.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Lund University.
    Sjöstedt, Johanna
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Israelsson, Stina
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Martínez-García, Sandra
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Universidade de Vigo, Spain.
    Baltar, Federico
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). University of Otago, New Zealand.
    Muthusamy, Sarala Devi
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Pontiller, Benjamin
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Karlsson, Christofer M. G.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Legrand, Catherine
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Pinhassi, Jarone
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Seasonality and co-occurrences of free-living Baltic Sea bacterioplanktonManuskript (preprint) (Annet vitenskapelig)
  • 8.
    Bunse, Carina
    et al.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Pinhassi, Jarone
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Marine bacterioplankton seasonal succession dynamics2017Inngår i: Trends in Microbiology, ISSN 0966-842X, E-ISSN 1878-4380, Vol. 25, nr 6, s. 495-505Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Bacterioplankton (bacteria and archaea) are indispensable regulators of global element cycles owing to their unique ability to decompose and remineralize dissolved organic matter. These microorganisms in surface waters worldwide exhibit pronounced seasonal succession patterns, governed by physicochemical factors (e.g., light, climate, and nutrient loading) that are determined by latitude and distance to shore. Moreover, we emphasize that the effects of large-scale factors are modulated regionally, and over shorter timespans (days to weeks), by biological interactions including molecule exchanges, viral lysis, and grazing. Thus the interplay and scaling between factors ultimately determine the success of particular bacterial populations. Spatiotemporal surveys of bacterioplankton community composition provide the necessary frame for interpreting how the distinct metabolisms encoded in the genomes of different bacteria regulate biogeochemical cycles.

  • 9.
    Fridolfsson, Emil
    et al.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Bunse, Carina
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). University of Oldenburg, Germany.
    Legrand, Catherine
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Lindehoff, Elin
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Majaneva, Sanna
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). The Arctic University of Norway, Norway.
    Hylander, Samuel
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Seasonal variation and species-specific concentrations of the essential vitamin B₁ (thiamin) in zooplankton and seston2019Inngår i: Marine Biology, ISSN 0025-3162, E-ISSN 1432-1793, Vol. 166, nr 6, s. 1-13, artikkel-id 70Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Thiamin (vitamin B1) is mainly produced by bacteria and phytoplankton and then transferred to zooplankton and higher trophic levels but knowledge on the dynamics of these processes in aquatic ecosystems is lacking. Hence, the seasonal variation in thiamin content was assessed in field samples of copepods and in pico-, nano- and micro-plankton of two size classes (0.7–3 µm and > 3 µm) collected monthly in the Baltic Sea during 3 years and in the Skagerrak during 1 year. Copepods exhibited species-specific concentrations of thiamin and Acartia sp. had the highest carbon-specific thiamin content, at both locations. Even members of the same genus, but from different systems contained different levels of thiamin, with higher thiamin content per specimen in copepods from the Skagerrak compared to congeners from the Baltic Sea. Furthermore, our results show that the small plankton (0.7–3 µm) had a higher carbon-specific thiamin content compared to the large (> 3 µm). Additionally, there was a large seasonal variation and thiamin content was highly correlated comparing the two size fractions. Finally, there was an overall positive correlation between thiamin content in copepods and plankton. However, for periods of high thiamin content in the two size fractions, this correlation was negative. This suggests a decoupling between thiamin availability in pico-, nano- and micro-plankton and zooplankton in the Baltic Sea. Knowledge about concentrations of this essential micronutrient in the aquatic food web is limited and this study constitutes a foundation for further understanding the dynamics of thiamin in aquatic environments.

    Fulltekst (pdf)
    fulltext
  • 10.
    Fridolfsson, Emil
    et al.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Bunse, Carina
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). University of Gothenburg, Sweden.
    Lindehoff, Elin
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Farnelid, Hanna
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Pontiller, Benjamin
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany.
    Bergström, Kristofer
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Pinhassi, Jarone
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Legrand, Catherine
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Halmstad University, Sweden.
    Hylander, Samuel
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Multiyear analysis uncovers coordinated seasonality in stocks and composition of the planktonic food web in the Baltic Sea proper2023Inngår i: Scientific Reports, E-ISSN 2045-2322, Vol. 13, nr 1, artikkel-id 11865Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The planktonic realm from bacteria to zooplankton provides the baseline for pelagic aquatic food webs. However, multiple trophic levels are seldomly included in time series studies, hampering a holistic understanding of the influence of seasonal dynamics and species interactions on food web structure and biogeochemical cycles. Here, we investigated plankton community composition, focusing on bacterio-, phyto- and large mesozooplankton, and how biotic and abiotic factors correlate at the Linnaeus Microbial Observatory (LMO) station in the Baltic Sea from 2011 to 2018. Plankton communities structures showed pronounced dynamic shifts with recurring patterns. Summarizing the parts of the planktonic microbial food web studied here to total carbon, a picture emerges with phytoplankton consistently contributing > 39% while bacterio- and large mesozooplankton contributed ~ 30% and ~ 7%, respectively, during summer. Cyanophyceae, Actinobacteria, Bacteroidetes, and Proteobacteria were important groups among the prokaryotes. Importantly, Dinophyceae, and not Bacillariophyceae, dominated the autotrophic spring bloom whereas Litostomatea (ciliates) and Appendicularia contributed significantly to the consumer entities together with the more traditionally observed mesozooplankton, Copepoda and Cladocera. Our findings of seasonality in both plankton composition and carbon stocks emphasize the importance of time series analyses of food web structure for characterizing the regulation of biogeochemical cycles and appropriately constraining ecosystem models. 

    Fulltekst (pdf)
    fulltext
  • 11.
    Godhe, Anna
    et al.
    University of Gothenburg.
    Sjoekvist, Conny
    Åbo Akademi University, Finland.
    Sildever, Sirje
    Tallinn University of Technology, Estonia.
    Sefbom, Josefin
    University of Gothenburg.
    Harðardóttir, Sara
    Natural History Museum of Denmark, Denmark ; University of Copenhagen, Denmark.
    Bertos-Fortis, Mireia
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Bunse, Carina
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Gross, Susanna
    University of Gothenburg.
    Johansson, Emma
    University of Gothenburg.
    Jonsson, Per R.
    University of Gothenburg.
    Khandan, Saghar
    Lund University.
    Legrand, Catherine
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Lips, Inga
    Tallinn University of Technology, Estonia.
    Lundholm, Nina
    Natural History Museum of Denmark, Denmark ; University of Copenhagen, Denmark.
    Rengefors, Karin E.
    Lund University.
    Physical barriers and environmental gradients cause spatial and temporal genetic differentiation of an extensive algal bloom2016Inngår i: Journal of Biogeography, ISSN 0305-0270, E-ISSN 1365-2699, Vol. 43, nr 6, s. 1130-1142Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Aim

    To test if a phytoplankton bloom is panmictic, or whether geographical and environmental factors cause spatial and temporal genetic structure.

    Location

    Baltic Sea.

    Method

    During four cruises, we isolated clonal strains of the diatom Skeletonema marinoifrom 9 to 10 stations along a 1132 km transect and analysed the genetic structure using eight microsatellites. Using F-statistics and Bayesian clustering analysis we determined if samples were significantly differentiated. A seascape approach was applied to examine correlations between gene flow and oceanographic connectivity, and combined partial Mantel test and RDA based variation partitioning to investigate associations with environmental gradients.

    Results

    The bloom was initiated during the second half of March in the southern and the northern- parts of the transect, and later propagated offshore. By mid-April the bloom declined in the south, whereas high phytoplankton biomass was recorded northward. We found two significantly differentiated populations along the transect. Genotypes were significantly isolated by distance and by the south–north salinity gradient, which illustrated that the effects of distance and environment were confounded. The gene flow among the sampled stations was significantly correlated with oceanographic connectivity. The depletion of silica during the progression of the bloom was related to a temporal population genetic shift.

    Main conclusions

    A phytoplankton bloom may propagate as a continuous cascade and yet be genetically structured over both spatial and temporal scales. The Baltic Sea spring bloom displayed strong spatial structure driven by oceanographic connectivity and geographical distance, which was enhanced by the pronounced salinity gradient. Temporal transition of conditions important for growth may induce genetic shifts and different phenotypic strategies, which serve to maintain the bloom over longer periods.

  • 12.
    Hagström, Åke
    et al.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Zweifel, Ulla Li
    University of Gothenburg, Sweden.
    Sundh, John
    Stockholm University, Sweden.
    Osbeck, Christofer M. G.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Bunse, Carina
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Univ Oldenburg HIFMB, Germany.
    Sjöstedt, Johanna
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Lund University, Sweden.
    Muller-Karulis, Barbel
    Stockholm University, Sweden.
    Pinhassi, Jarone
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Linnéuniversitetet, Kunskapsmiljöer Linné, Vatten.
    Composition and Seasonality of Membrane Transporters in Marine Picoplankton2021Inngår i: Frontiers in Microbiology, E-ISSN 1664-302X, Vol. 12, artikkel-id 714732Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this study, we examined transporter genes in metagenomic and metatranscriptomic data from a time-series survey in the temperate marine environment of the Baltic Sea. We analyzed the abundance and taxonomic distribution of transporters in the 3 mu m-0.2 mu m size fraction comprising prokaryotes and some picoeukaryotes. The presence of specific transporter traits was shown to be guiding the succession of these microorganisms. A limited number of taxa were associated with the dominant transporter proteins that were identified for the nine key substrate categories for microbial growth. Throughout the year, the microbial taxa at the level of order showed highly similar patterns in terms of transporter traits. The distribution of transporters stayed the same, irrespective of the abundance of each taxon. This would suggest that the distribution pattern of transporters depends on the bacterial groups being dominant at a given time of the year. Also, we find notable numbers of secretion proteins that may allow marine bacteria to infect and kill prey organisms thus releasing nutrients. Finally, we demonstrate that transporter proteins may provide clues to the relative importance of biogeochemical processes, and we suggest that virtual transporter functionalities may become important components in future population dynamics models.</p>

  • 13.
    Israelsson, Stina
    et al.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Bunse, Carina
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Baltar, Federico
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). University of Otago, New Zealand.
    Bertos-Fortis, Mireia
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Fridolfsson, Emil
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Legrand, Catherine
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Lindehoff, Elin
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Lindh, Markus V.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Lund University.
    Martinez-Garcia, Sandra
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Universidade de Vigo, Spain.
    Pinhassi, Jarone
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Seasonal dynamics of Baltic Sea plankton activities: heterotrophic bacterial function under different biological and environmental conditionsManuskript (preprint) (Annet vitenskapelig)
  • 14.
    Laber, Christien P.
    et al.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Pontiller, Benjamin
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). GEOMAR Helmholtz Ctr Ocean Res Kiel, Germany.
    Bunse, Carina
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Carl von Ossietzky Univ Oldenburg, Germany.
    Osbeck, Christofer M. G.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Pérez Martínez, Clara
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Di Leo, Danilo
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Lundin, Daniel
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Linnéuniversitetet, Kunskapsmiljöer Linné, Vatten.
    Legrand, Catherine
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Linnéuniversitetet, Kunskapsmiljöer Linné, Vatten. Halmstad University, Sweden.
    Pinhassi, Jarone
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Linnéuniversitetet, Kunskapsmiljöer Linné, Vatten.
    Farnelid, Hanna
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Linnéuniversitetet, Kunskapsmiljöer Linné, Vatten.
    Seasonal and Spatial Variations in Synechococcus Abundance and Diversity Throughout the Gullmar Fjord, Swedish Skagerrak2022Inngår i: Frontiers in Microbiology, E-ISSN 1664-302X, Vol. 13, artikkel-id 828459Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The picophytoplankton Synechococcus is a globally abundant autotroph that contributes significantly to primary production in the oceans and coastal areas. These cyanobacteria constitute a diverse genus of organisms that have developed independent niche spaces throughout aquatic environments. Here, we use the 16S V3-V4 rRNA gene region and flow cytometry to explore the diversity of Synechococcus within the picophytoplankton community in the Gullmar Fjord, on the west coast of Sweden. We conducted a station-based 1-year time series and two transect studies of the fjord. Our analysis revealed that within the large number of Synechococcus amplicon sequence variants (ASVs; 239 in total), prevalent ASVs phylogenetically clustered with clade representatives in both marine subcluster 5.1 and 5.2. The near-surface composition of ASVs shifted from spring to summer, when a 5.1 subcluster dominated community developed along with elevated Synechococcus abundances up to 9.3 x 10(4) cells ml(-1). This seasonal dominance by subcluster 5.1 was observed over the length of the fjord (25 km), where shifts in community composition were associated with increasing depth. Unexpectedly, the community shift was not associated with changes in salinity. Synechococcus abundance dynamics also differed from that of the photosynthetic picoeukaryote community. These results highlight how seasonal variations in environmental conditions influence the dynamics of Synechococcus clades in a high latitude threshold fjord.

    Fulltekst (pdf)
    fulltext
  • 15.
    Martínez-García, Sandra
    et al.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Univ Vigo, Spain.
    Bunse, Carina
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Carl von Ossietzky Univ Oldenburg, Germany.
    Pontiller, Benjamin
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Baltar, Federico
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Univ Vienna, Austria.
    Israelsson, Stina
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Fridolfsson, Emil
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Lindh, Markus V.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Lundin, Daniel
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Linnéuniversitetet, Kunskapsmiljöer Linné, Vatten.
    Legrand, Catherine
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Linnéuniversitetet, Kunskapsmiljöer Linné, Vatten.
    Pinhassi, Jarone
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Linnéuniversitetet, Kunskapsmiljöer Linné, Vatten.
    Seasonal Dynamics in Carbon Cycling of Marine Bacterioplankton Are Lifestyle Dependent2022Inngår i: Frontiers in Microbiology, E-ISSN 1664-302X, Vol. 13, artikkel-id 834675Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Although free-living (FL) and particle-attached (PA) bacteria are recognized as ecologically distinct compartments of marine microbial food-webs, few, if any, studies have determined their dynamics in abundance, function (production, respiration and substrate utilization) and taxonomy over a yearly cycle. In the Baltic Sea, abundance and production of PA bacteria (defined as the size-fraction >3.0 mu m) peaked over 3 months in summer (6 months for FL bacteria), largely coinciding with blooms of Chitinophagales (Bacteroidetes). Pronounced changes in the growth efficiency (range 0.05-0.27) of FL bacteria (defined as the size-fraction <3.0 mu m) indicated the magnitude of seasonal variability of ecological settings bacteria experience. Accordingly, 16S rRNA gene analyses of bacterial community composition uncovered distinct correlations between taxa, environmental variables and metabolisms, including Firmicutes associated with elevated hydrolytic enzyme activity in winter and Verrucomicrobia with utilization of algal-derived substrates during summer. Further, our results suggested a substrate-controlled succession in the PA fraction, from Bacteroidetes using polymers to Actinobacteria and Betaproteobacteria using monomers across the spring to autumn phytoplankton bloom transition. Collectively, our findings emphasize pronounced seasonal changes in both the composition of the bacterial community in the PA and FL size-fractions and their contribution to organic matter utilization and carbon cycling. This is important for interpreting microbial ecosystem function-responses to natural and human-induced environmental changes.

    Fulltekst (pdf)
    fulltext
  • 16.
    Nilsson, Emelie
    et al.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Li, K.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Fridlund, Jimmy
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Šulčius, Sigitas
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Nat Res Ctr, Lithuania.
    Bunse, Carina
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Helmholtz Zentrum Polar & Meeresforsch, Germany;Carl von Ossietzky Univ Oldenburg, Germany.
    Karlsson, Christofer M. G.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Lindh, Markus V.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Swedish Meteorological and Hydrological Institute, Sweden.
    Lundin, Daniel
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Pinhassi, Jarone
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Holmfeldt, Karin
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Genomic and Seasonal Variations among Aquatic Phages Infecting the Baltic Sea Gammaproteobacterium Rheinheimera sp. Strain BAL3412019Inngår i: Applied and Environmental Microbiology, ISSN 0099-2240, E-ISSN 1098-5336, Vol. 85, nr 18, s. 1-19, artikkel-id e01003-19Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Knowledge in aquatic virology has been greatly improved by culture-independent methods, yet there is still a critical need for isolating novel phages to identify the large proportion of "unknowns" that dominate metagenomes and for detailed analyses of phage-host interactions. Here, 54 phages infecting Rheinheimem sp. strain BAL341 (Gammaproteobacteria) were isolated from Baltic Sea seawater and characterized through genome content analysis and comparative genomics. The phages showed a myovirus-like morphology and belonged to a novel genus, for which we propose the name Barbavirus. All phages had similar genome sizes and numbers of genes (80 to 84 kb; 134 to 145 genes), and based on average nucleotide identity and genome BLAST distance phylogeny, the phages were divided into five species. The phages possessed several genes involved in metabolic processes and host signaling, such as genes encoding ribonucleotide reductase and thymidylate synthase, phoH, and rnazG. One species had additional metabolic genes involved in pyridine nucleotide salvage, possibly providing a fitness advantage by further increasing the phages' replication efficiency. Recruitment of viral metagenomic reads (25 Baltic Sea viral metagenomes from 2012 to 2015) to the phage genomes showed pronounced seasonal variations, with increased relative abundances of barba phages in August and September synchronized with peaks in host abundances, as shown by 16S rRNA gene amplicon sequencing. Overall, this study provides detailed information regarding genetic diversity, phage-host interactions, and temporal dynamics of an ecologically important aquatic phage-host system. IMPORTANCE Phages are important in aquatic ecosystems as they influence their microbial hosts through lysis, gene transfer, transcriptional regulation, and expression of phage metabolic genes. Still, there is limited knowledge of how phages interact with their hosts, especially at fine scales. Here, a Rheinheimera phage-host system constituting highly similar phages infecting one host strain is presented. This relatively limited diversity has previously been seen only when smaller numbers of phages have been isolated and points toward ecological constraints affecting the Rheinheimera phage diversity. The variation of metabolic genes among the species points toward various fitness advantages, opening up possibilities for future hypothesis testing. Phage-host dynamics monitored over several years point toward recurring "kill-the-winner" oscillations and an ecological niche fulfilled by this system in the Baltic Sea. Identifying and quantifying ecological dynamics of such phage-host model systems in situ allow us to understand and study the influence of phages on aquatic ecosystems.

  • 17.
    Palovaara, Joakim
    et al.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Akram, Neelam
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Baltar, Federico
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Bunse, Carina
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Forsberg, Jeremy
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Pedrós-Alió, Carlos
    CSIC, Inst Ciencies Mar, Spain.
    González, José M.
    Univ La Laguna, Spain.
    Pinhassi, Jarone
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Stimulation of growth by proteorhodopsin phototrophy involves regulation of central metabolic pathways in marine planktonic bacteria2014Inngår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 111, nr 35, s. E3650-E3658Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Proteorhodopsin (PR) is present in half of surface ocean bacterioplankton, where its light-driven proton pumping provides energy to cells. Indeed, PR promotes growth or survival in different bacteria. However, the metabolic pathways mediating the light responses remain unknown. We analyzed growth of the PR-containing Dokdonia sp. MED134 (where light-stimulated growth had been found) in seawater with low concentrations of mixed [yeast extract and peptone (YEP)] or single (alanine, Ala) carbon compounds as models for rich and poor environments. We discovered changes in gene expression revealing a tightly regulated shift in central metabolic pathways between light and dark conditions. Bacteria showed relatively stronger light responses in Ala compared with YEP. Notably, carbon acquisition pathways shifted toward anaplerotic CO2 fixation in the light, contributing 31 +/- 8% and 24 +/- 6% of the carbon incorporated into biomass in Ala and YEP, respectively. Thus, MED134 was a facultative double mixotroph, i.e., photo- and chemotrophic for its energy source and using both bicarbonate and organic matter as carbon sources. Unexpectedly, relative expression of the glyoxylate shunt genes (isocitrate lyase and malate synthase) was >300-fold higher in the light-but only in Ala-contributing a more efficient use of carbon from organic compounds. We explored these findings in metagenomes and metatranscriptomes and observed similar prevalence of the glyoxylate shunt compared with PR genes and highest expression of the isocitrate lyase gene coinciding with highest solar irradiance. Thus, regulatory interactions between dissolved organic carbon quality and central metabolic pathways critically determine the fitness of surface ocean bacteria engaging in PR phototrophy.

  • 18.
    Pontiller, Benjamin
    et al.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Pérez Martínez, Clara
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Bunse, Carina
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). University of Oldenburg, Germany.
    Osbeck, Christofer M. G.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    González, José M.
    University of La Laguna, Spain.
    Lundin, Daniel
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Linnéuniversitetet, Kunskapsmiljöer Linné, Vatten.
    Pinhassi, Jarone
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Linnéuniversitetet, Kunskapsmiljöer Linné, Vatten.
    Taxon-Specific Shifts in Bacterial and Archaeal Transcription of Dissolved Organic Matter Cycling Genes in a Stratified Fjord2021Inngår i: mSystems, E-ISSN 2379-5077, Vol. 6, nr 6, artikkel-id e00575-21Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A considerable fraction of organic matter derived from photosynthesis in the euphotic zone settles into the ocean's interior and, as it progresses, is degraded by diverse microbial consortia that utilize a suite of extracellular enzymes and membrane transporters. Still, the molecular details that regulate carbon cycling across depths remain little explored. As stratification in fjords has made them attractive models to explore patterns in biological oceanography, we here analyzed bacterial and archaeal transcription in samples from five depth layers in the Gullmar Fjord, Sweden. Transcriptional variation over depth correlated with gradients in chlorophyll a and nutrient concentrations. Differences in transcription between sampling dates (summer and early autumn) were strongly correlated with ammonium concentrations, which potentially was linked with a stronger influence of (micro-)zooplankton grazing in summer. Transcriptional investment in carbohydrate-active enzymes (CAZymes) decreased with depth and shifted toward peptidases, partly a result of elevated CAZyme transcription by Flavobacteriales, Cellvibrionales, and Synechococcales at 2 to 25 m and a dominance of peptidase transcription by Alteromonadales and Rhodobacterales from 50 m down. In particular, CAZymes for chitin, laminarin, and glycogen were important. High levels of transcription of ammonium transporter genes by Thaumarchaeota at depth (up to 18% of total transcription), along with the genes for ammonia oxidation and CO2 fixation, indicated that chemolithoautotrophy contributed to the carbon flux in the fjord. The taxon-specific expression of functional genes for processing of the marine pool of dissolved organic matter and inorganic nutrients across depths emphasizes the importance of different microbial foraging mechanisms over spatiotemporal scales for shaping biogeochemical cycles.

    IMPORTANCE It is generally recognized that stratification in the ocean strongly influences both the community composition and the distribution of ecological functions of microbial communities, which in turn are expected to shape the biogeochemical cycling of essential elements over depth. Here, we used metatranscriptomics analysis to infer molecular detail on the distribution of gene systems central to the utilization of organic matter in a stratified marine system. We thereby uncovered that pronounced shifts in the transcription of genes encoding CAZymes, peptidases, and membrane transporters occurred over depth among key prokaryotic orders. This implies that sequential utilization and transformation of organic matter through the water column is a key feature that ultimately influences the efficiency of the biological carbon pump.

    Fulltekst (pdf)
    fulltext
  • 19.
    Westmeijer, George
    et al.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Mehrshad, Maliheh
    Swedish University of Agricultural Sciences, Sweden.
    Turner, Stephanie
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Alakangas, Linda
    Swedish Nuclear Fuel and Waste Management Co, Sweden.
    Sachpazidou, Varvara
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Bunse, Carina
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). University of Oldenburg, Germany.
    Pinhassi, Jarone
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Linnéuniversitetet, Kunskapsmiljöer Linné, Vatten.
    Ketzer, João Marcelo
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Linnéuniversitetet, Kunskapsmiljöer Linné, Vatten.
    Åström, Mats E.
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Linnéuniversitetet, Kunskapsmiljöer Linné, Vatten.
    Bertilsson, Stefan
    Swedish University of Agricultural Sciences, Sweden.
    Dopson, Mark
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM). Linnéuniversitetet, Kunskapsmiljöer Linné, Vatten.
    Connectivity of Fennoscandian Shield terrestrial deep biosphere microbiomes with surface communities2022Inngår i: Communications Biology, E-ISSN 2399-3642, Vol. 5, nr 1, artikkel-id 37Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The deep biosphere is an energy constrained ecosystem yet fosters diverse microbial communities that are key in biogeochemical cycling. Whether microbial communities in deep biosphere groundwaters are shaped by infiltration of allochthonous surface microorganisms or the evolution of autochthonous species remains unresolved. In this study, 16S rRNA gene amplicon analyses showed that few groups of surface microbes infiltrated deep biosphere groundwaters at the Äspö Hard Rock Laboratory, Sweden, but that such populations constituted up to 49% of the microbial abundance. The dominant persisting phyla included Patescibacteria, Proteobacteria, and Epsilonbacteraeota. Despite the hydrological connection of the Baltic Sea with the studied groundwaters, infiltrating microbes predominantly originated from deep soil groundwater. Most deep biosphere groundwater populations lacked surface representatives, suggesting that they have evolved from ancient autochthonous populations. We propose that deep biosphere groundwater communities in the Fennoscandian Shield consist of selected infiltrated and indigenous populations adapted to the prevailing conditions.

    Fulltekst (pdf)
    fulltext
1 - 19 of 19
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf