lnu.sePublications
Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alneberg, Johannes
    et al.
    KTH Royal Institute of Technology.
    Karlsson, Christofer M. G.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Divne, Anna-Maria
    Uppsala University.
    Bergin, Claudia
    Uppsala University.
    Homa, Felix
    Uppsala University.
    Lindh, Markus V.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Lund University.
    Hugerth, Luisa W.
    KTH Royal Institute of Technology;Karolinska Institutet.
    Ettema, Thijs J. G.
    Uppsala University.
    Bertilsson, Stefan
    Uppsala University.
    Andersson, Anders F.
    KTH Royal Institute of Technology.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Genomes from uncultivated prokaryotes: a comparison of metagenome-assembled and single-amplified genomes2018In: Microbiome, ISSN 0026-2633, E-ISSN 2049-2618, Vol. 6, article id 173Article in journal (Refereed)
    Abstract [en]

    Background: Prokaryotes dominate the biosphere and regulate biogeochemical processes essential to all life. Yet, our knowledge about their biology is for the most part limited to the minority that has been successfully cultured. Molecular techniques now allow for obtaining genome sequences of uncultivated prokaryotic taxa, facilitating in-depth analyses that may ultimately improve our understanding of these key organisms. Results: We compared results from two culture-independent strategies for recovering bacterial genomes: single-amplified genomes and metagenome-assembled genomes. Single-amplified genomes were obtained from samples collected at an offshore station in the Baltic Sea Proper and compared to previously obtained metagenome-assembled genomes from a time series at the same station. Among 16 single-amplified genomes analyzed, seven were found to match metagenome-assembled genomes, affiliated with a diverse set of taxa. Notably, genome pairs between the two approaches were nearly identical (average 99.51% sequence identity; range 98.77-99.84%) across overlapping regions (30-80% of each genome). Within matching pairs, the single-amplified genomes were consistently smaller and less complete, whereas the genetic functional profiles were maintained. For the metagenome-assembled genomes, only on average 3.6% of the bases were estimated to be missing from the genomes due to wrongly binned contigs. Conclusions: The strong agreement between the single-amplified and metagenome-assembled genomes emphasizes that both methods generate accurate genome information from uncultivated bacteria. Importantly, this implies that the research questions and the available resources are allowed to determine the selection of genomics approach for microbiome studies.

  • 2.
    Bunse, Carina
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Lundin, Daniel
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Karlsson, Christofer M. G.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Akram, Neelam
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Vila-Costa, Maria
    Centre d’Estudis Avançats de Blanes-CSIC, Spain.
    Palovaara, Joakim
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Svensson, Lovisa
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Holmfeldt, Karin
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    González, José M.
    University of La Laguna, Spain.
    Calvo, Eva
    Institut de Ciències del Mar—CSIC, Spain.
    Pelejero, Carles
    Institut de Ciències del Mar—CSIC, Spain.
    Marrasé, Cèlia
    Institut de Ciències del Mar—CSIC, Spain.
    Dopson, Mark
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Gasol, Josep
    Institut de Ciències del Mar—CSIC, Spain.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Response of marine bacterioplankton pH homeostasis gene expression to elevated CO22016In: Nature Climate Change, ISSN 1758-678X, E-ISSN 1758-6798, Vol. 6, no 5, p. 483-487Article in journal (Refereed)
    Abstract [en]

    Human-induced ocean acidification impacts marine life. Marine bacteria are major drivers of biogeochemical nutrient cycles and energy fluxes1; hence, understanding their performance under projected climate change scenarios is crucial for assessing ecosystem functioning. Whereas genetic and physiological responses of phytoplankton to ocean acidification are being disentangled2, 3, 4, corresponding functional responses of bacterioplankton to pH reduction from elevated CO2 are essentially unknown. Here we show, from metatranscriptome analyses of a phytoplankton bloom mesocosm experiment, that marine bacteria responded to lowered pH by enhancing the expression of genes encoding proton pumps, such as respiration complexes, proteorhodopsin and membrane transporters. Moreover, taxonomic transcript analysis showed that distinct bacterial groups expressed different pH homeostasis genes in response to elevated CO2. These responses were substantial for numerous pH homeostasis genes under low-chlorophyll conditions (chlorophyll a <2.5 μg l−1); however, the changes in gene expression under high-chlorophyll conditions (chlorophyll a >20 μg l−1) were low. Given that proton expulsion through pH homeostasis mechanisms is energetically costly, these findings suggest that bacterioplankton adaptation to ocean acidification could have long-term effects on the economy of ocean ecosystems.

  • 3.
    Bunse, Carina
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Lundin, Daniel
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Lindh, Markus V.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Lund University.
    Sjöstedt, Johanna
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Israelsson, Stina
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Martínez-García, Sandra
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Universidade de Vigo, Spain.
    Baltar, Federico
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. University of Otago, New Zealand.
    Muthusamy, Sarala Devi
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Pontiller, Benjamin
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Karlsson, Christofer M. G.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Legrand, Catherine
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Seasonality and co-occurrences of free-living Baltic Sea bacterioplanktonManuscript (preprint) (Other academic)
  • 4.
    Karlsson, Christofer M. G.
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Cerro-Galvez, Elena
    CSIC, Spain.
    Lundin, Daniel
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Karlsson, Camilla
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Vila-Costa, Maria
    CSIC, Spain.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Direct effects of organic pollutants on the growth and gene expression of the Baltic Sea model bacterium Rheinheimera sp. BAL3412019In: Microbial Biotechnology, ISSN 1751-7907, E-ISSN 1751-7915, Vol. 12, no 5, p. 892-906Article in journal (Refereed)
    Abstract [en]

    Organic pollutants (OPs) are critically toxic, bioaccumulative and globally widespread. Moreover, several OPs negatively influence aquatic wildlife. Although bacteria are major drivers of the ocean carbon cycle and the turnover of vital elements, there is limited knowledge of OP effects on heterotrophic bacterioplankton. We therefore investigated growth and gene expression responses of the Baltic Sea model bacterium Rheinheimera sp. BAL341 to environmentally relevant concentrations of distinct classes of OPs in 2-h incubation experiments. During exponential growth, exposure to a mix of polycyclic aromatic hydrocarbons, alkanes and organophosphate esters (denoted MIX) resulted in a significant decrease (between 9% and 18%) in bacterial abundance and production compared with controls. In contrast, combined exposure to perfluorooctanesulfonic acids and perfluorooctanoic acids (denoted PFAS) had no significant effect on growth. Nevertheless, MIX and PFAS exposures both induced significant shifts in gene expression profiles compared with controls in exponential growth. This involved several functional metabolism categories (e.g. stress response and fatty acids metabolism), some of which were pollutant-specific (e.g. phosphate acquisition and alkane-1 monooxygenase genes). In stationary phase, only two genes in the MIX treatment were significantly differentially expressed. The substantial direct influence of OPs on metabolism during bacterial growth suggests that widespread OPs could severely alter biogeochemical processes governed by bacterioplankton.

  • 5.
    Nilsson, Emelie
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Li, K.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Fridlund, Jimmy
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Sulcius, S.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Nat Res Ctr, Lithuania.
    Bunse, Carina
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Helmholtz Zentrum Polar & Meeresforsch, Germany;Carl von Ossietzky Univ Oldenburg, Germany.
    Karlsson, Christofer M. G.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Lindh, Markus V.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Swedish Meteorological and Hydrological Institute, Sweden.
    Lundin, Daniel
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Pinhassi, Jarone
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Holmfeldt, Karin
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Genomic and Seasonal Variations among Aquatic Phages Infecting the Baltic Sea Gammaproteobacterium Rheinheimera sp. Strain BAL3412019In: Applied and Environmental Microbiology, ISSN 0099-2240, E-ISSN 1098-5336, Vol. 85, no 18, p. 1-19, article id e01003-19Article in journal (Refereed)
    Abstract [en]

    Knowledge in aquatic virology has been greatly improved by culture-independent methods, yet there is still a critical need for isolating novel phages to identify the large proportion of "unknowns" that dominate metagenomes and for detailed analyses of phage-host interactions. Here, 54 phages infecting Rheinheimem sp. strain BAL341 (Gammaproteobacteria) were isolated from Baltic Sea seawater and characterized through genome content analysis and comparative genomics. The phages showed a myovirus-like morphology and belonged to a novel genus, for which we propose the name Barbavirus. All phages had similar genome sizes and numbers of genes (80 to 84 kb; 134 to 145 genes), and based on average nucleotide identity and genome BLAST distance phylogeny, the phages were divided into five species. The phages possessed several genes involved in metabolic processes and host signaling, such as genes encoding ribonucleotide reductase and thymidylate synthase, phoH, and rnazG. One species had additional metabolic genes involved in pyridine nucleotide salvage, possibly providing a fitness advantage by further increasing the phages' replication efficiency. Recruitment of viral metagenomic reads (25 Baltic Sea viral metagenomes from 2012 to 2015) to the phage genomes showed pronounced seasonal variations, with increased relative abundances of barba phages in August and September synchronized with peaks in host abundances, as shown by 16S rRNA gene amplicon sequencing. Overall, this study provides detailed information regarding genetic diversity, phage-host interactions, and temporal dynamics of an ecologically important aquatic phage-host system. IMPORTANCE Phages are important in aquatic ecosystems as they influence their microbial hosts through lysis, gene transfer, transcriptional regulation, and expression of phage metabolic genes. Still, there is limited knowledge of how phages interact with their hosts, especially at fine scales. Here, a Rheinheimera phage-host system constituting highly similar phages infecting one host strain is presented. This relatively limited diversity has previously been seen only when smaller numbers of phages have been isolated and points toward ecological constraints affecting the Rheinheimera phage diversity. The variation of metabolic genes among the species points toward various fitness advantages, opening up possibilities for future hypothesis testing. Phage-host dynamics monitored over several years point toward recurring "kill-the-winner" oscillations and an ecological niche fulfilled by this system in the Baltic Sea. Identifying and quantifying ecological dynamics of such phage-host model systems in situ allow us to understand and study the influence of phages on aquatic ecosystems.

  • 6.
    Sjöstedt, Johanna
    et al.
    Uppsala University;Lund University.
    Langenheder, Silke
    Uppsala University.
    Kritzberg, Emma
    Lund University.
    Karlsson, Christofer M. G.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Lindström, Eva S.
    Uppsala University.
    Repeated disturbances affect functional but not compositional resistance and resilience in an aquatic bacterioplankton community2018In: Environmental Microbiology Reports, ISSN 1758-2229, E-ISSN 1758-2229, Vol. 10, no 4, p. 493-500Article in journal (Refereed)
    Abstract [en]

    Disturbances are believed to be one of the main factors influencing variations in community diversity and functioning. Here we investigated if exposure to a pH press disturbance affected the composition and functional performance of a bacterial community and its resistance, recovery and resilience to a second press disturbance (salt addition). Lake bacterial assemblages were initially exposed to reduced pH in six mesocosms whereas another six mesocosms were kept as reference. Seven days after the pH disturbance, three tanks from each treatment were exposed to a salt disturbance. Both bacterial production and enzyme activity were negatively affected by the salt treatment, regardless if the communities had been subject to a previous disturbance or not. However, cell-specific enzyme activity had a higher resistance in communities pre-exposed to the pH disturbance compared to the reference treatment. In contrast, for cell-specific bacterial production resistance was not affected, but recovery was faster in the communities that had previously been exposed to the pH disturbance. Over time, bacterial community composition diverged among treatments, in response to both pH and salinity. The difference in functional recovery, resilience and resistance may depend on differences in community composition caused by the pH disturbance, niche breadth or acquired stress resistance.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf