lnu.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Blyberg, Louise
    et al.
    Linnaeus University, Faculty of Technology, Department of Building Technology.
    Lang, Maria
    Glafo, SE-35196 Växjö, Sweden.
    Lundstedt, Karin
    Glafo, SE-35196 Växjö, Sweden.
    Schander, Matilda
    Glafo, SE-35196 Växjö, Sweden.
    Serrano, Erik
    Linnaeus University, Faculty of Technology, Department of Building Technology.
    Silfverhielm, Magnus
    Linnaeus University, Faculty of Technology, Department of Building Technology.
    Stålhandske, Christina
    Glafo, SE-35196 Växjö, Sweden.
    Glass, timber and adhesive joints - Innovative load bearing building components2014In: Construction and Building Materials, ISSN 0950-0618, E-ISSN 1879-0526, Vol. 55, p. 470-478Article in journal (Refereed)
    Abstract [en]

    Structural glass-timber composite beams and shear wall elements were investigated in terms of their mechanical behaviour, energy performance and their LCA performance. The load bearing components were manufactured using annealed float glass which was adhesively bonded to the timber with different adhesives. The results show, among other things, that is is possible to join the two materials glass and timber and obtaining a non-brittle failure of the beams. The shear wall elements have the potential of being used as stabilising elements and load bearing walls in buildings of up to 4 storeys height. It is possible to combine glass and timber in a load bearing shear wall without loss of energy performance of a building or without loosing LCA performance. In addition to these benefits, the timber glass composite wall has, of course the benefit of being transparent.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf