lnu.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Schulte, Jesko
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Kan exponering av As, Cd och Pb efter konsumtion av vilda bär och svamp i Glasriket utgöra en hälsorisk?2014Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
  • 2.
    Schulte, Jesko Pitt Manoel
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Smarta steg på väg mot hållbara transporter?: Snabbladdningsinfrastruktur och elvägar ur ett strategiskt livscykelperspektiv2015Independent thesis Advanced level (degree of Master (Two Years)), 30 credits / 45 HE creditsStudent thesis
    Abstract [en]

    The transport sector accounts for one fourth of Sweden’s total energy use and causes one third of the national emissions of greenhouse gases. At the same time, the Swedish government has set high goals: the vehicle fleet shall be fossil-independent until 2020 and Sweden shall not have any net emissions of greenhouse gases 2050. Quick and powerful actions are needed in order to reach these goals. Electrification has been pointed out as a key factor for success. In order for electric vehicles to be able to challenge and replace the fossil system, investment in new infrastructure is necessary. Fast chargers, where passenger cars can recharge their battery in short time, are already in place in many parts of Sweden. Electric roads is a term for new and innovative technologies where vehicles are charged from the road while they are driving.

    But which technique is the most strategic stepping stone on the way to sustainability? This study has its ground in the framework for strategic sustainable development which can be used to plan for sustainability in complex systems. At its core it uses backcasting from four basic sustainability principles. This work uses a combination of different methods to investigate the environmental impact and costs of fast charging infrastructure and electric roads from a strategic life cycle perspective. That information is then used to build models to take a closer look at how emissions to the environment change per invested Swedish crown, also dependent on how the used electricity is produced.

    The results show a large potential to decrease the environmental impact for both techniques, but it is strongly dependent on the electricity mix. Furthermore, this work shows that is is important to include the environmental impact of the infrastructure itself in life cycle analyses, because it can has a significant share in the total emissions. Finally, it is pointed out that it often not is the case that the emissions of carbon dioxide equivalents are the most important impact. It is therefore crucial to use a more holistic perspective in life cycle impact assessments. This work has identified a number of factors with large relevance but also large uncertainty. It is therefore recommended to fill the identified knowledge gaps and to expand the presented models with more factors and more alternative techniques, to get a more detailed picture of which solution is the best stepping stone on Sweden’s way to a sustainable future.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf