lnu.sePublications
Change search
Refine search result
123 101 - 117 of 117
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 101.
    Sunde, Johanna
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Larsson, Per
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Forsman, Anders
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Adaptations of early development to local spawning temperature in anadromous populations of pike (Esox lucius)2019In: BMC Evolutionary Biology, ISSN 1471-2148, E-ISSN 1471-2148, Vol. 19, p. 1-13, article id 148Article in journal (Refereed)
    Abstract [en]

    Background: In the wake of climate change many environments will be exposed to increased and more variable temperatures. Knowledge about how species and populations respond to altered temperature regimes is therefore important to improve projections of how ecosystems will be affected by global warming, and to aid management. We conducted a common garden, split-brood temperature gradient (4.5 degrees C, 9.7 degrees C and 12.3 degrees C) experiment to study the effects of temperature in two populations (10 families from each population) of anadromous pike (Esox lucius) that normally experience different temperatures during spawning. Four offspring performance measures (hatching success, day degrees until hatching, fry survival, and fry body length) were compared between populations and among families. Results: Temperature affected all performance measures in a population-specific manner. Low temperature had a positive effect on the Harfjarden population and a negative effect on the Lervik population. Further, the effects of temperature differed among families within populations. Conclusions: The population-specific responses to temperature indicate genetic differentiation in developmental plasticity between populations, and may reflect an adaptation to low temperature during early fry development in Harfjarden, where the stream leading up to the wetland dries out relatively early in the spring, forcing individuals to spawn early. The family-specific responses to temperature treatment indicate presence of genetic variation for developmental plasticity (G x E) within both populations. Protecting between- and within-population genetic variation for developmental plasticity and high temperature-related adaptive potential of early life history traits will be key to long-term viability and persistence in the face of continued climate change.

  • 102.
    Sunde, Johanna
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Tamario, Carl
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Swedish University of Agricultural Sciences.
    Tibblin, Petter
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Larsson, Per
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Forsman, Anders
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Variation in salinity tolerance between and within anadromous subpopulations of pike (Esox lucius)2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, article id 22Article in journal (Refereed)
    Abstract [en]

    Environmental heterogeneity is a key determinant of genetic and phenotypic diversity. Stable andhomogenous environments tends to result in evolution of specialism and local adaptations, whiletemporally unpredictable environments may maintain a diversity of specialists, promote generaliststrategies, or favour diversified bet hedging strategies. We compared salinity tolerance between twoanadromous subpopulations of pike (Esox Lucius) that utilize freshwater spawning sites with differentsalinity regimes. Eggs from each population were artificially fertilized and incubated in a salinitygradient (0, 3, 5, 7, and 9 psu) using a split-brood design. Effects on embryonic development, hatchingsuccess, survival of larvae, and fry body length were compared between populations and families.The population naturally spawning in the stable freshwater habitat showed signs of specialization forfreshwater spawning. The population exposed to fluctuating selective pressure in a spawning area withoccasional brackish water intrusions tolerated higher salinities and displayed considerable variation inreaction norms. Genetic differences and plasticity of salinity tolerance may enable populations to copewith changes in salinity regimes associated with future climate change. That geographically adjacentsubpopulations can constitute separate units with different genetic characteristics must be consideredin management and conservation efforts to avoid potentially negative effects of genetic admixture onpopulation fitness and persistence.

  • 103.
    Tamario, Carl
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Sunde, Johanna
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Petersson, Erik
    Swedish University of Agricultural Sciences, Sweden.
    Tibblin, Petter
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Forsman, Anders
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Ecological and Evolutionary Consequences of Environmental Change and Management Actions for Migrating Fish2019In: Frontiers in Ecology and Evolution, E-ISSN 2296-701X, Vol. 7, p. 1-24, article id 271Article, review/survey (Refereed)
    Abstract [en]

    Migration strategies in fishes comprise a rich, ecologically important, and socioeconomically valuable example of biological diversity. The variation and flexibility in migration is evident between and within individuals, populations, and species, and thereby provides a useful model system that continues to inform how ecological and evolutionary processes mold biodiversity and how biological systems respond to environmental heterogeneity and change. Migrating fishes are targeted by commercial and recreational fishing and impact the functioning of aquatic ecosystems. Sadly, many species of migrating fish are under increasing threat by exploitation, pollution, habitat destruction, dispersal barriers, overfishing, and ongoing climate change that brings modified, novel, more variable and extreme conditions and selection regimes. All this calls for protection, sustainable utilization and adaptive management. However, the situation for migrating fishes is complicated further by actions aimed at mitigating the devastating effects of such threats. Changes in river connectivity associated with removal of dispersal barriers such as dams and construction of fishways, together with compensatory breeding, and supplemental stocking can impact on gene flow and selection. How this in turn affects the dynamics, genetic structure, genetic diversity, evolutionary potential, and viability of spawning migrating fish populations remains largely unknown. In this narrative review we describe and discuss patterns, causes, and consequences of variation and flexibility in fish migration that are scientifically interesting and concern key issues within the framework of evolution and maintenance of biological diversity. We showcase how the evolutionary solutions to key questions that define migrating fish-whether or not to migrate, why to migrate, where to migrate, and when to migrate-may depend on individual characteristics and ecological conditions. We explore links between environmental change and migration strategies, and discuss whether and how threats associated with overexploitation, environmental makeovers, and management actions may differently influence vulnerability of individuals, populations, and species depending on the variation and flexibility of their migration strategies. Our goal is to provide a broad overview of knowledge in this emerging area, spur future research, and development of informed management, and ultimately promote sustainable utilization and protection of migrating fish and their ecosystems.

  • 104.
    Tibblin, Petter
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Berggren, Hanna
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Nordahl, Oscar
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Larsson, Per
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Forsman, Anders
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Causes and consequences of intra-specific variation in vertebral number2016In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, article id 26372Article in journal (Refereed)
    Abstract [en]

    Intraspecific variation in vertebral number is taxonomically widespread. Much scientific attention hasbeen directed towards understanding patterns of variation in vertebral number among individualsand between populations, particularly across large spatial scales and in structured environments.However, the relative role of genes, plasticity, selection, and drift as drivers of individual variation andpopulation differentiation remains unknown for most systems. Here, we report on patterns, causesand consequences of variation in vertebral number among and within sympatric subpopulations ofpike (Esox lucius). Vertebral number differed among subpopulations, and common garden experimentsindicated that this reflected genetic differences. A QST-FST comparison suggested that populationdifferences represented local adaptations driven by divergent selection. Associations with fitness traitsfurther indicated that vertebral counts were influenced both by stabilizing and directional selectionwithin populations. Overall, our study enhances the understanding of adaptive variation, which iscritical for the maintenance of intraspecific diversity and species conservation.

  • 105.
    Tibblin, Petter
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Forsman, Anders
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Borger, Tobias
    Kalmar County Council.
    Larsson, Per
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Causes and consequences of repeatability, flexibility and individual fine tuning of of migratory timing in pike2016In: Journal of Animal Ecology, ISSN 0021-8790, E-ISSN 1365-2656, Vol. 85, no 1, p. 136-145Article in journal (Refereed)
    Abstract [en]

    1. Many organisms undertake migrations between foraging and breeding habitats and while it is assumed that reproductive timing affects fitness, little is known about the degree of individual consistency, and about the causes and consequences of individual variation in migratory timing in organisms other than birds. 2. Here, we report on a 6-year mark-recapture study, including 2048 individuals, of breeding migration in anadromous pike (Esox lucius), an iteroparous top-predatory fish that displays homing behaviour. By repeated sampling across years at a breeding site, we first quantify individual variation both within and between breeding events and then investigate phenotypic correlates and fitness consequences of arrival timing to the breeding site. 3. Our data demonstrate that males arrive before females, that large males arrive later than small males, that the timing of breeding migration varies among years and that individuals are consistent in their timing across years relative to other individuals in the population. 4. Furthermore, data on return rates indicate that arrival time is under stabilizing viability selection, and that individuals who are more flexible in their timing of arrival during the first reproductive years survive longer compared with less flexible individuals. Finally, longitudinal data demonstrate that individuals consistently fine-tune their arrival timing across years, showing that the timing of arrival to breeding sites is influenced by experience. 5. These findings represent rare evidence of how between-and within-individual variations in migratory timing across breeding events are correlated with phenotypic and fitness traits in an ecologically important keystone species. Our results emphasize the importance of considering variation in migratory timing both between and within individuals in studies investigating the fitness consequences of migratory behaviour and have implications for future management.

  • 106.
    Tibblin, Petter
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Forsman, Anders
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Koch-Schmidt, Per
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Nordahl, Oscar
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Johannessen, Peter
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Nilsson, Jonas
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Larsson, Per
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Evolutionary divergence of adult body size and juvenile growth in sympatric subpopulations of a top predator in aquatic ecosystems2015In: American Naturalist, ISSN 0003-0147, E-ISSN 1537-5323, Vol. 186, no 1, p. 98-110Article in journal (Refereed)
    Abstract [en]

    Evolutionary theory predicts that different selective regimes may contribute to divergent evolution of body size and growth rate among populations, but most studies have focused on allopatric populations. Here, we studied five sympatric subpopulations of anadromous northern pike (Esox lucius) in the Baltic Sea subjected to allopatric habitats for a short period of their life cycle due to homing behavior. We report differences in adult body size among subpopulations that were in part due to variation in growth rate. Body size of emigrating juveniles also differed among subpopulations, and differences remained when individuals were reared in a common environment, thus indicating evolutionary divergence among subpopulations. Furthermore, a QST-FST comparison indicated that differences had evolved due to divergent selection rather than genetic drift, possibly in response to differences in selective mortality among spawning habitats during the allopatric life stage. Adult and juvenile size were negatively correlated across subpopulations, and reconstruction of growth trajectories of adult fishes suggested that body size differences developed gradually and became accentuated throughout the first years of life. These results represent rare evidence that sympatric subpopulations can evolve differences in key life-history traits despite being subjected to allopatric habitats during only a very short fraction of their life.

  • 107.
    Tinnert, Jon
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Berggren, Hanna
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Forsman, Anders
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Population-specific effects of interbreeding and admixture on reproductive decisions and offspring quality2016In: Annales Zoologici Fennici, ISSN 0003-455X, E-ISSN 1797-2450, Vol. 53, no 1-2, p. 55-68Article in journal (Refereed)
    Abstract [en]

    We investigated interbreeding and admixture in Tetrix subulata grasshoppers from two maternal origin populations that differed in life-history and dispersal traits. We compared reproductive output of females that had been experimentally mated with males from the same or from a different population. Interbreeding affected clutch size and number of clutches; in one population females in the admixed treatment produced smaller clutches, in the other population females in the admixed treatment produced more clutches. Behavioral observations indicated that individuals can discriminate scents emitted by individuals from different populations; such that females might adjust reproductive allocation depending on male origin. However, hatchability of eggs and survival of nymphs were not affected by the mating treatment. Admixture influenced the production of viable offspring in the F2 generation, but the effect was opposite in the two populations of maternal origin. Results suggested that responses to interbreeding and admixture can differ between populations within a species.

  • 108.
    Tinnert, Jon
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Forsman, Anders
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    The role of dispersal for genetic and phenotypic variation: insights from comparisons of sympatric pygmy grasshoppers2017In: Biological Journal of the Linnean Society, ISSN 0024-4066, E-ISSN 1095-8312, Vol. 122, no 1, p. 84-97Article in journal (Refereed)
    Abstract [en]

    Patterns of genetic and phenotypic variation within and among populations are influenced by a complex interplay of ecological and evolutionary processes. Theory posits that gene flow should increase diversity within and reduce differentiation between populations. Evaluating these predictions is potentially complicated by selection, population dynamics and plasticity that may also affect genetic and phenotypic variation. Here, we compare genetic and morphological variation between sympatric populations of two pygmy grasshopper species, Tetrix subulata and T. undulata, that differ in dispersal capacity. We found that genetic differentiation between populations is lower on average in the generally dispersive T. subulata compared with the mostly sedentary T. undulata, suggesting that genetic structure in the latter species has been less influenced by the homogenizing effects of migration. Our results also provided weak support for the hypothesis that neutral genetic diversity within populations should be higher in T. subulata than in T. undulata. We further found that body size varied among populations in both species, but the differences seen in T. subulata did not parallel those seen in T. undulata, indicating that the two species have unique plasticity responses or that they have responded differently to shared selective regimes. Our findings illustrate the utility of the pairwise comparative approach and further highlight that results and conclusions may not be transferrable even between closely related species.

  • 109.
    Tinnert, Jon
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Hellgren, Olof
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Lund University.
    Lindberg, Jenny
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. Naturbruksskolan Sotasen.
    Koch-Schmidt, Per
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Forsman, Anders
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Population genetic structure, differentiation, and diversity in Tetrix subulata pygmy grasshoppers: roles of population size and immigration2016In: Ecology and Evolution, ISSN 2045-7758, E-ISSN 2045-7758, Vol. 6, no 21, p. 7831-7846Article in journal (Refereed)
    Abstract [en]

    Genetic diversity within and among populations and species is influenced by complex demographic and evolutionary processes. Despite extensive research, there is no consensus regarding how landscape structure, spatial distribution, gene flow, and population dynamics impact genetic composition of natural populations. Here, we used amplified fragment length polymorphisms (AFLPs) to investigate effects of population size, geographic isolation, immigration, and gene flow on genetic structure, divergence, and diversity in populations of Tetrix subulata pygmy grasshoppers (Orthoptera: Tetrigidae) from 20 sampling locations in southern Sweden. Analyses of 1564 AFLP markers revealed low to moderate levels of genetic diversity (PPL=59.5-90.1; Hj=0.23-0.32) within and significant divergence among sampling localities. This suggests that evolution of functional traits in response to divergent selection is possible and that gene flow is restricted. Genetic diversity increased with population size and with increasing proportion of long-winged phenotypes (a proxy of recent immigration) across populations on the island of oland, but not on the mainland. Our data further suggested that the open water separating oland from the mainland acts as a dispersal barrier that restricts migration and leads to genetic divergence among regions. Isolation by distance was evident for short interpopulation distances on the mainland, but gradually disappeared as populations separated by longer distances were included. Results illustrate that integrating ecological and molecular data is key to identifying drivers of population genetic structure in natural populations. Our findings also underscore the importance of landscape structure and spatial sampling scheme for conclusions regarding the role of gene flow and isolation by distance.

  • 110.
    Wennersten, Lena
    et al.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Forsman, Anders
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Does colour polymorphism enhance survival of prey populations?2009In: Proceedings of the Royal Society of London. Biological Sciences, ISSN 0962-8452, E-ISSN 1471-2954, Vol. 276, no 1665, p. 2187-2194Article in journal (Refereed)
    Abstract [en]

    That colour polymorphism may protect prey populations from predation is an old but rarely tested hypothesis. We examine whether colour polymorphic populations of prey exposed to avian predators in an ecologically valid visual context were exposed to increased extinction risk compared with monomorphic populations. We made 2976 artificial pastry prey, resembling Lepidoptera larvae, in four different colours and presented them in 124 monomorphic and 124 tetramorphic populations on tree trunks and branches such that they would be exposed to predation by free-living birds, and monitored their 'survival'. Among monomorphic populations, there was a significant effect of prey coloration on survival, confirming that coloration influenced susceptibility to visually oriented predators. Survival of polymorphic populations was inferior to that of monomorphic green populations, but did not differ significantly from monomorphic brown, yellow or red populations. Differences in survival within polymorphic populations paralleled those seen among monomorphic populations; the red morph most frequently went extinct first and the green morph most frequently survived the longest. Our findings do not support the traditional protective polymorphism hypothesis and are in conflict with those of earlier studies. As a possible explanation to our findings, we offer a competing 'giveaway cue' hypothesis: that polymorphic populations may include one morph that attracts the attention of predators and that polymorphic populations therefore may suffer increased predation compared with some monomorphic populations.

  • 111.
    Wennersten, Lena
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Forsman, Anders
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Population-level consequences of polymorphism, plasticity and randomized phenotype switching: a review of predictions2012In: Biological Reviews, ISSN 1464-7931, E-ISSN 1469-185X, Vol. 87, no 3, p. 756-767Article, review/survey (Refereed)
    Abstract [en]

    The consequences of among-individual phenotypic variation for the performance and ecological success of populations and species has attracted growing interest in recent years. Earlier reviews of this field typically address the consequences for population processes of one specific source of variation (plasticity or polymorphism), or consider one specific aspect of population performance, such as rate of speciation. Here we take a broader approach and study earlier reviews in order to summarize and compare predictions regarding several population-level consequences of phenotypic variation stemming from genetic polymorphism, developmental plasticity or randomized phenotype switching. Unravelling cause-dependent consequences of variation may increase our ability to understand the ecological dynamics of natural populations and communities, develop more informed management plans for protection of biodiversity, suggest possible routes to increased productivity and yield in natural and managed biological systems, and resolve inconsistencies in patterns and results seen in studies of different model systems. We find an overall agreement regarding the effects of higher levels of phenotypic variation generated by different sources, but also some differences between fine-grained and coarse-grained environments, modular and unitary organisms, mobile and sessile organisms, and between flexible and fixed traits. We propose ways to test the predictions and identify issues where current knowledge is limited and future lines of investigation promise to provide important novel insights.

  • 112.
    Wennersten, Lena
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Forsman, Anders
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Strong support for predicted population-level consequences of diversity: a review of exeperimental and comparative studiesManuscript (preprint) (Other academic)
  • 113.
    Wennersten, Lena
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Johansson, Jenny
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Karpestam, Einat
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Forsman, Anders
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Higher establishment success in more diverse groups of pygmy grasshoppers under seminatural conditions2012In: Ecology, ISSN 0012-9658, E-ISSN 1939-9170, Vol. 93, no 12, p. 2519-2525Article in journal (Refereed)
    Abstract [en]

    Large founder groups and habitat match have been shown to increase the establishment success of reintroduced populations. Theory posits that the diversity of founder groups should also be important, but this has rarely been investigated. Here, experimental introductions of color-polymorphic Tetrix subulata pygmy grasshoppers into outdoor enclosures were used to test whether higher phenotypic diversity promotes establishment success. We show that the number of individuals present one year after introduction increases with color morph diversity in founder groups. Variance in establishment success did not decrease with increasing founder diversity, arguing against an important contribution of sampling effects or evolutionary rescue. Color morphs in T. subulata covary with a suite of other functionally important traits and utilize different resources. The higher establishment success in more diverse founder groups may therefore result, in part, from niche complementarity. Variation in establishment among groups was not associated with differences among source populations in reproductive capacities.

  • 114.
    Wennersten, Lena
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Karpestam, Einat
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Forsman, Anders
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Phenotype manipulation influences microhabitat choice in pygmy grasshoppers2012In: Current Zoology, ISSN 1674-5507, Vol. 58, no 3, p. 392-400Article in journal (Refereed)
    Abstract [en]

    The matching habitat choice hypothesis posits that individuals actively choose those microhabitats that best match their specificphenotype to maximize fitness. Despite the profound implications, matching habitat choice has not been unequivocally demonstrated. Weconducted two experiments to examine the impact of pigmentation pattern in the color polymorphic pygmy grasshopper Tetrix subulata onhabitat choice in a laboratory thermal mosaic arena. We found no behavioral differences in the thermal mosaic among pygmy grasshoppersbelonging to either pale, intermediate or dark natural color morphs. However, after manipulating the grasshoppers’ phenotype, the utilizationthrough time of warmer and colder parts of the arena was different for black-painted and white-painted individuals. White-paintedindividuals used warmer parts of the arena, at least during the initial stage of the experiment. We conclude that microhabitat choicerepresents a form of behavioural plasticity. Thus, even if the choice itself is flexible and not genetically determined, it can still lead to spatialgenetic structure in the population because the phenotypes themselves may be genetically mediated

  • 115.
    Yildirim, Yeserin
    et al.
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Tinnert, Jon
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Forsman, Anders
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Contrasting patterns of neutral and functional genetic diversity in stable and disturbed environments2018In: Ecology and Evolution, ISSN 2045-7758, E-ISSN 2045-7758, Vol. 8, no 23, p. 12073-12089Article in journal (Refereed)
    Abstract [en]

    Genetic structure among and diversity within natural populations is influenced by acombination of ecological and evolutionary processes. These processes can differentlyinfluence neutral and functional genetic diversity and also vary according toenvironmental settings. To investigate the roles of interacting processes as drivers ofpopulation‐level genetic diversity in the wild, we compared neutral and functionalstructure and diversity between 20 Tetrix undulata pygmy grasshopper populations indisturbed and stable habitats. Genetic differentiation was evident among the differentpopulations, but there was no genetic separation between stable and disturbedenvironments. The incidence of long‐winged phenotypes was higher in disturbedhabitats, indicating that these populations were recently established by flight‐capablecolonizers. Color morph diversity and dispersion of outlier genetic diversity, estimatedusing AFLP markers, were higher in disturbed than in stable environments,likely reflecting that color polymorphism and variation in other functionally importanttraits increase establishment success. Neutral genetic diversity estimated usingAFLP markers was lower in disturbed habitats, indicating stronger eroding effects onneutral diversity of genetic drift associated with founding events in disturbed comparedto stable habitats. Functional diversity and neutral diversity were negativelycorrelated across populations, highlighting the utility of outlier loci in genetics studiesand reinforcing that estimates of genetic diversity based on neutral markers donot infer evolutionary potential and the ability of populations and species to copewith environmental change.

  • 116.
    Zverev, Vitali
    et al.
    University of Turku, Finland.
    Kozlov, Mikhail
    University of Turku, Finland.
    Forsman, Anders
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Zvereva, Elena
    University fo Turku, Finland.
    Ambient temperatures differently influence colour morphs of the leaf beetle Chrysomela lapponica: roles of thermal melanism and developmental plasticity2018In: Journal of Thermal Biology, ISSN 0306-4565, E-ISSN 1879-0992, Vol. 74, p. 100-109Article in journal (Refereed)
    Abstract [en]

    We asked whether ambient temperatures can affect morph frequencies within a subarctic population of thepolymorphic leaf beetle Chrysomela lapponica through thermal melanism and/or developmental plasticity. Bodytemperature increased faster in beetles of dark morph than in beetles of light morph under exposure to artificialirradiation. Dark males ran faster than light males in both field and laboratory experiments, and this differencedecreased with increasing ambient air temperature, from significant at 10 °C to non-significant at 20 °C and26 °C. On cold days (6–14 °C), significantly more dark males than light males were found on their host plants incopula (40.8% and 27.3% respectively); on warm days (15–22 °C) this difference disappeared. Light femalesproduced twice as many eggs as dark females; this difference did not depend on the ambient temperature. Theproportion of dark morphs in the progenies of pairs with one dark parent was twice as high as that in theprogenies of pairs in which both parents were light, and this proportion was greater when larvae developed atlow (10 and 15 °C) than at high (20 and 25 °C) temperatures. We conclude that low temperatures may increasethe frequencies of dark morphs in C. lapponica populations due to both the mating advantages of dark males overlight males and developmental plasticity. Variation in frequencies of low-fecund dark morphs in the population,caused by among-year differences in temperature together with density-dependent selection, may contribute tothe evolutionary dynamics of the colour polymorphism and may influence abundance fluctuations in these leafbeetle populations.

  • 117.
    Zvereva, Elena L.
    et al.
    Univ Turku, Finland.
    Castagneyrol, Bastien
    Univ Bordeaux, France.
    Cornelissen, Tatiana
    Univ Fed Minas Gerais, Brazil.
    Forsman, Anders
    Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science.
    Hernandez-Agueero, Juan Antonio
    Univ Rey Juan Carlos, Spain.
    Klemola, Tero
    Univ Turku, Finland.
    Paolucci, Lucas
    Univ Fed Lavras, Brazil;Inst Pesquisa Ambiental Amazonia, Brazil.;Univ Fed Vicosa, Brazil.
    Polo, Vicente
    Univ Rey Juan Carlos, Spain.
    Salinas, Norma
    Pontificia Univ Catolica Peru, Peru.
    Theron, Kasselman Jurie
    Stellenbosch Univ, South Africa.
    Xu, Guorui
    Chinese Acad Sci, China.
    Zverev, Vitali
    Univ Turku, Finland.
    Kozlov, Mikhail V.
    Univ Turku, Finland.
    Opposite latitudinal patterns for bird and arthropod predation revealed in experiments with differently colored artificial prey2019In: Ecology and Evolution, ISSN 2045-7758, E-ISSN 2045-7758Article in journal (Refereed)
    Abstract [en]

    The strength of biotic interactions is generally thought to increase toward the equator, but support for this hypothesis is contradictory. We explored whether predator attacks on artificial prey of eight different colors vary among climates and whether this variation affects the detection of latitudinal patterns in predation. Bird attack rates negatively correlated with model luminance in cold and temperate environments, but not in tropical environments. Bird predation on black and on white (extremes in luminance) models demonstrated different latitudinal patterns, presumably due to differences in prey conspicuousness between habitats with different light regimes. When attacks on models of all colors were combined, arthropod predation decreased, whereas bird predation increased with increasing latitude. We conclude that selection for prey coloration may vary geographically and according to predator identity, and that the importance of different predators may show contrasting patterns, thus weakening the overall latitudinal trend in top-down control of herbivorous insects.

123 101 - 117 of 117
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf