Warfarin is a clinically important drug widely used in the treatment of thrombolic disorders e.g. myocardial infarction and stroke.1 When administered, 99% of the drug present in blood is bound to the transport protein human serum albumin (HSA).2 On account of the fact that HSA demonstrates polymorphism and warfarin has a narrow therapeutic index, careful monitoring of the effect of drug-dosage must be performed.
Currently, warfarin’s anticoagulant effect is measured by an indirect method in which the clotting time is measured and correlated to the amount of warfarin present. As current methods for self-monitoring are limited, the development of alternative robust and more sensitive methods is desirable.
In this study, we have developed a non-covalent molecularly imprinted polymer3 (MIP) system with selectivity for warfarin.4 The HSA-like binding properties of this MIP were established in previous efforts to develop polymers capable of HSA-like binding of warfarin.5
In principle, the fluorophoric nature of warfarin should allow for the fluorescence spectroscopy-based detection of the drug. Recent efforts by us,6-8 using a series of theoretical and spectroscopic studies have highlighted the complex nature of warfarin. In particular, the medium dependent isomerization of this drug illustrates why spectroscopy based methods for the direct detection of the drug has not been forthcoming. Results from these studies have been used to develop a method for the in situ detection of warfarin using time resolved fluorescence spectroscopy.
(1) Landefeld, C.; Beyth, R. Anticoagulant-related bleeding - epidemiology, prediction and prevention. Am. J. Med. 1993, 95, 315-328.
(2) Yacobi, A.; Udall, J. A.; Levy, G. Comparative pharmacokinetics of coumarin anticoagulants.18 Serum-protein binding as a determinant of warfarin body clearance and anticoagulant effect. Clin. Pharmacol Ther. 1976, 19, 552-558.
(3) Alexander, C.; Andersson, H. S.; Andersson, L. I.; Ansell, R. J.; Kirsch, N.; Nicholls, I. A.; O'Mahony, J.; Whitcombe, M. J. Molecular imprinting science and technology: A survey of the literature for the years up to and including 2003. Journal of Molecular Recognition 2006, 19, 106-180.
(4) Rosengren, A. M.; Karlsson, B. C. G.; Näslund, I.; Andersson, P. O.; Nicholls, I. A. Time resolved fluorescence spectroscopic detection of the anticoagulant warfarin: A sensor-based method for direct detection in blood plasma. 2010, Submitted.
(5) Karlsson, B. C. G.; Rosengren, A. M.; Näslund, I.; Andersson, P. O.; Nicholls, I. A. Synthetic Human Serum Albumin Sudlow I binding site mimics. 2010, Submitted.
(6) Karlsson, B. C. G.; Rosengren, A. M.; Andersson, P. O.; Nicholls, I. A. The Spectrophysics of Warfarin: Implications for Protein Binding J. Phys. Chem. B 2007, 111, 10520-10528.
(7) Karlsson, B. C. G.; Rosengren, A. M.; Andersson, P. O.; Nicholls, I. A. Molecular Insights on the Two Fluorescence Lifetimes Displayed by Warfarin from Fluorescence Anisotropy and Molecular Dynamics Studies. J. Phys. Chem. B 2009, 113, 7945-7949.
(8) Nicholls, I. A.; Karlsson, B. C. G., Rosengren, A. M.. Henschel, H. Warfarin: an Environment-Dependent Switchable Molecular Probe. J. Mol. Recognit. 2010, in press.